Cumulant expansion for counting Eulerian orientations

被引:0
|
作者
Isaev, Mikhail [1 ]
Mckay, Brendan D. [2 ]
Zhang, Rui-Ray [3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[2] Australian Natl Univ, Sch Comp, Canberra, ACT 2601, Australia
[3] Simons Laufer Math Sci Inst, Berkeley, CA 94720 USA
基金
澳大利亚研究理事会;
关键词
Eulerian orientation; Graph; Spanning tree; Ice-model; Cumulant; NUMBER; ENTROPY;
D O I
10.1016/j.jctb.2025.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An Eulerian orientation is an orientation of the edges of a graph such that every vertex is balanced: its in-degree equals its out-degree. Counting Eulerian orientations corresponds to the crucial partition function in so-called "ice-type models" in statistical physics and is known to be hard for general graphs. For all graphs with good expansion properties and degrees larger than log8 n , we derive an asymptotic expansion for this count that approximates it to precision O ( n - c ) for arbitrarily large c , where n is the number of vertices. The proof relies on a new tail bound for the cumulant expansion of the Laplace transform, which is of independent interest. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:263 / 314
页数:52
相关论文
共 50 条
  • [1] Counting planar Eulerian orientations
    Elvey-Price, Andrew
    Guttmann, Anthony J.
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 71 : 73 - 98
  • [2] Beyond #CSP: A dichotomy for counting weighted Eulerian orientations with ARS
    Cai, Jin-Yi
    Fu, Zhiguo
    Shao, Shuai
    INFORMATION AND COMPUTATION, 2020, 275
  • [3] Correction of photon counting histogram analysis for diffusion: Cumulant expansion approach
    Melnykov, Artem V.
    Hall, Kathleen B.
    BIOPHYSICAL JOURNAL, 2007, : 517A - 517A
  • [4] EULERIAN ORIENTATIONS AND CIRCULATIONS
    GUAN, MG
    PULLEYBLANK, W
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1985, 6 (04): : 657 - 664
  • [5] On the number of Eulerian orientations of a graph
    Mihail, M.
    Winkler, P.
    Algorithmica (New York), 1996, 16 (4-5):
  • [6] On the diameter of Eulerian orientations of graphs
    Babai, Laszlo
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 822 - 831
  • [7] On the number of Eulerian orientations of a graph
    Mihail, M
    Winkler, P
    ALGORITHMICA, 1996, 16 (4-5) : 402 - 414
  • [8] BOUNDS ON THE NUMBER OF EULERIAN ORIENTATIONS
    SCHRIJVER, A
    COMBINATORICA, 1983, 3 (3-4) : 375 - 380
  • [9] On the number of planar Eulerian orientations
    Bonichon, Nicolas
    Bousquet-Melou, Mireille
    Dorbec, Paul
    Pennarun, Claire
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 65 : 59 - 91
  • [10] Convergence of the variational cumulant expansion
    Chen, Y
    Zhu, YL
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (02) : 241 - 244