From quantum groups to Liouville and dilaton quantum gravity

被引:0
|
作者
Yale Fan
Thomas G. Mertens
机构
[1] University of Texas at Austin,Theory Group, Department of Physics
[2] Ghent University,Department of Physics and Astronomy
关键词
2D Gravity; Models of Quantum Gravity; Quantum Groups; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the underlying quantum group symmetry of 2d Liouville and dilaton gravity models, both consolidating known results and extending them to the cases with N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 supersymmetry. We first calculate the mixed parabolic representation matrix element (or Whittaker function) of Uq(sl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{sl} $$\end{document}(2, ℝ)) and review its applications to Liouville gravity. We then derive the corresponding matrix element for Uq(osp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{osp} $$\end{document}(1|2, ℝ)) and apply it to explain structural features of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 Liouville supergravity. We show that this matrix element has the following properties: (1) its q → 1 limit is the classical OSp+(1|2, ℝ) Whittaker function, (2) it yields the Plancherel measure as the density of black hole states in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 Liouville supergravity, and (3) it leads to 3j-symbols that match with the coupling of boundary vertex operators to the gravitational states as appropriate for N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 Liouville supergravity. This object should likewise be of interest in the context of integrability of supersymmetric relativistic Toda chains. We furthermore relate Liouville (super)gravity to dilaton (super)gravity with a hyperbolic sine (pre)potential. We do so by showing that the quantization of the target space Poisson structure in the (graded) Poisson sigma model description leads directly to the quantum group Uq(sl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{sl} $$\end{document}(2, ℝ)) or the quantum supergroup Uq(osp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{osp} $$\end{document}(1|2, ℝ)).
引用
收藏
相关论文
共 50 条
  • [21] Baxter permuton and Liouville quantum gravity
    Jacopo Borga
    Nina Holden
    Xin Sun
    Pu Yu
    [J]. Probability Theory and Related Fields, 2023, 186 : 1225 - 1273
  • [22] Liouville Quantum Gravity on the Riemann Sphere
    David, Francois
    Kupiainen, Antti
    Rhodes, Remi
    Vargas, Vincent
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (03) : 869 - 907
  • [23] Liouville quantum gravity on the unit disk
    Huang, Yichao
    Rhodes, Remi
    Vargas, Vincent
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (03): : 1694 - 1730
  • [24] Geodesic distances in Liouville quantum gravity
    Ambjorn, J.
    Budd, T. G.
    [J]. NUCLEAR PHYSICS B, 2014, 889 : 676 - 691
  • [25] Liouville Quantum Gravity on the Riemann Sphere
    François David
    Antti Kupiainen
    Rémi Rhodes
    Vincent Vargas
    [J]. Communications in Mathematical Physics, 2016, 342 : 869 - 907
  • [26] A distance exponent for Liouville quantum gravity
    Ewain Gwynne
    Nina Holden
    Xin Sun
    [J]. Probability Theory and Related Fields, 2019, 173 : 931 - 997
  • [27] Roughness of geodesics in Liouville quantum gravity
    Fan, Zherui
    Goswami, Subhajit
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 2194 - 2210
  • [28] Two-dimensional quantum dilaton gravity and the quantum cosmological constant
    Zonetti, Simone
    Govaerts, Jan
    [J]. IC-MSQUARE 2012: INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELLING IN PHYSICAL SCIENCES, 2013, 410
  • [29] Dilaton gravity, Poisson sigma models and loop quantum gravity
    Bojowald, Martin
    Reyes, Juan D.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (03)
  • [30] Quantum gravity and the cosmological constant: Lessons from two-dimensional dilaton gravity
    Govaerts, Jan
    Zonetti, Simone
    [J]. PHYSICAL REVIEW D, 2013, 87 (08):