A distance exponent for Liouville quantum gravity

被引:0
|
作者
Ewain Gwynne
Nina Holden
Xin Sun
机构
[1] MIT,
[2] Columbia University,undefined
来源
关键词
60J67 (SLE); 60D05 (geometric probability); 60J65 (Brownian motion);
D O I
暂无
中图分类号
学科分类号
摘要
Let γ∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,2)$$\end{document} and let h be the random distribution on C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C$$\end{document} which describes a γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Liouville quantum gravity (LQG) cone. Also let κ=16/γ2>4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa = 16/\gamma ^2 >4$$\end{document} and let η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} be a whole-plane space-filling SLEκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\kappa $$\end{document} curve sampled independent from h and parametrized by γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-quantum mass with respect to h. We study a family {Gϵ}ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal G^\epsilon \}_{\epsilon >0}$$\end{document} of planar maps associated with (h,η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(h, \eta )$$\end{document} called the LQG structure graphs (a.k.a. mated-CRT maps) which we conjecture converge in probability in the scaling limit with respect to the Gromov–Hausdorff topology to a random metric space associated with γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-LQG. In particular, Gϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G^\epsilon $$\end{document} is the graph whose vertex set is ϵZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \mathbb Z$$\end{document}, with two such vertices x1,x2∈ϵZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1,x_2\in \epsilon \mathbb Z$$\end{document} connected by an edge if and only if the corresponding curve segments η([x1-ϵ,x1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta ([x_1-\epsilon , x_1])$$\end{document} and η([x2-ϵ,x2])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta ([x_2-\epsilon ,x_2])$$\end{document} share a non-trivial boundary arc. Due to the peanosphere description of SLE-decorated LQG due to Duplantier et al. (Liouville quantum gravity as a mating of trees, 2014), the graph Gϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G^\epsilon $$\end{document} can equivalently be expressed as an explicit functional of a correlated two-dimensional Brownian motion, so can be studied without any reference to SLE or LQG. We prove non-trivial upper and lower bounds for the cardinality of a graph-distance ball of radius n in Gϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G^\epsilon $$\end{document} which are consistent with the prediction of Watabiki (Prog Theor Phys Suppl 114:1–17, 1993) for the Hausdorff dimension of LQG. Using subadditivity arguments, we also prove that there is an exponent χ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi > 0$$\end{document} for which the expected graph distance between generic points in the subgraph of Gϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G^\epsilon $$\end{document} corresponding to the segment η([0,1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta ([0,1])$$\end{document} is of order ϵ-χ+oϵ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon ^{-\chi + o_\epsilon (1)}$$\end{document}, and this distance is extremely unlikely to be larger than ϵ-χ+oϵ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon ^{-\chi + o_\epsilon (1)}$$\end{document}.
引用
收藏
页码:931 / 997
页数:66
相关论文
共 50 条
  • [1] A distance exponent for Liouville quantum gravity
    Gwynne, Ewain
    Holden, Nina
    Sun, Xin
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2019, 173 (3-4) : 931 - 997
  • [2] Liouville quantum gravity
    Li, Songyuan
    Toumbas, Nicolaos
    Troost, Jan
    [J]. NUCLEAR PHYSICS B, 2020, 952
  • [3] Distance measurement and wave dispersion in a Liouville-string approach to quantum gravity
    Amelino-Camelia, G
    Ellis, J
    Mavromatos, NE
    Nanopoulos, DV
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (03): : 607 - 623
  • [4] The distance exponent for Liouville first passage percolation is positive
    Ding, Jian
    Gwynne, Ewain
    Sepulveda, Avelio
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2021, 181 (04) : 1035 - 1051
  • [5] Liouville quantum gravity and KPZ
    Bertrand Duplantier
    Scott Sheffield
    [J]. Inventiones mathematicae, 2011, 185 : 333 - 393
  • [6] The distance exponent for Liouville first passage percolation is positive
    Jian Ding
    Ewain Gwynne
    Avelio Sepúlveda
    [J]. Probability Theory and Related Fields, 2021, 181 : 1035 - 1051
  • [7] Liouville quantum gravity and KPZ
    Duplantier, Bertrand
    Sheffield, Scott
    [J]. INVENTIONES MATHEMATICAE, 2011, 185 (02) : 333 - 393
  • [8] Liouville quantum gravity on the annulus
    Remy, Guillaume
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [9] LIOUVILLE QUANTUM GRAVITY AS A MATING OF TREES
    Duplantier, Bertrand
    Miller, Jason
    Sheffield, Scott
    [J]. ASTERISQUE, 2021, (427) : V - +
  • [10] Spectral Dimension of Liouville Quantum Gravity
    Rhodes, Remi
    Vargas, Vincent
    [J]. ANNALES HENRI POINCARE, 2014, 15 (12): : 2281 - 2298