A distance exponent for Liouville quantum gravity

被引:0
|
作者
Ewain Gwynne
Nina Holden
Xin Sun
机构
[1] MIT,
[2] Columbia University,undefined
来源
关键词
60J67 (SLE); 60D05 (geometric probability); 60J65 (Brownian motion);
D O I
暂无
中图分类号
学科分类号
摘要
Let γ∈(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,2)$$\end{document} and let h be the random distribution on C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb C$$\end{document} which describes a γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-Liouville quantum gravity (LQG) cone. Also let κ=16/γ2>4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa = 16/\gamma ^2 >4$$\end{document} and let η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} be a whole-plane space-filling SLEκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\kappa $$\end{document} curve sampled independent from h and parametrized by γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-quantum mass with respect to h. We study a family {Gϵ}ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\mathcal G^\epsilon \}_{\epsilon >0}$$\end{document} of planar maps associated with (h,η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(h, \eta )$$\end{document} called the LQG structure graphs (a.k.a. mated-CRT maps) which we conjecture converge in probability in the scaling limit with respect to the Gromov–Hausdorff topology to a random metric space associated with γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-LQG. In particular, Gϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G^\epsilon $$\end{document} is the graph whose vertex set is ϵZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \mathbb Z$$\end{document}, with two such vertices x1,x2∈ϵZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1,x_2\in \epsilon \mathbb Z$$\end{document} connected by an edge if and only if the corresponding curve segments η([x1-ϵ,x1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta ([x_1-\epsilon , x_1])$$\end{document} and η([x2-ϵ,x2])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta ([x_2-\epsilon ,x_2])$$\end{document} share a non-trivial boundary arc. Due to the peanosphere description of SLE-decorated LQG due to Duplantier et al. (Liouville quantum gravity as a mating of trees, 2014), the graph Gϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G^\epsilon $$\end{document} can equivalently be expressed as an explicit functional of a correlated two-dimensional Brownian motion, so can be studied without any reference to SLE or LQG. We prove non-trivial upper and lower bounds for the cardinality of a graph-distance ball of radius n in Gϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G^\epsilon $$\end{document} which are consistent with the prediction of Watabiki (Prog Theor Phys Suppl 114:1–17, 1993) for the Hausdorff dimension of LQG. Using subadditivity arguments, we also prove that there is an exponent χ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi > 0$$\end{document} for which the expected graph distance between generic points in the subgraph of Gϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal G^\epsilon $$\end{document} corresponding to the segment η([0,1])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta ([0,1])$$\end{document} is of order ϵ-χ+oϵ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon ^{-\chi + o_\epsilon (1)}$$\end{document}, and this distance is extremely unlikely to be larger than ϵ-χ+oϵ(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon ^{-\chi + o_\epsilon (1)}$$\end{document}.
引用
收藏
页码:931 / 997
页数:66
相关论文
共 50 条
  • [31] Liouville quantum gravity - holography, JT and matrices
    Mertens, Thomas G.
    Turiaci, Gustavo J.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (01)
  • [32] Conformal welding for critical Liouville quantum gravity
    Holden, Nina
    Powell, Ellen
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (03): : 1229 - 1254
  • [33] Local Conformal Structure of Liouville Quantum Gravity
    Antti Kupiainen
    Rémi Rhodes
    Vincent Vargas
    [J]. Communications in Mathematical Physics, 2019, 371 : 1005 - 1069
  • [34] Quantum gravity from timelike Liouville theory
    Bautista, Teresa
    Dabholkar, Atish
    Erbin, Harold
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [35] Liouville quantum gravity — holography, JT and matrices
    Thomas G. Mertens
    Gustavo J. Turiaci
    [J]. Journal of High Energy Physics, 2021
  • [36] A scaling approach to evaluating the distance exponent of the urban gravity model
    Chen, Yanguang
    Huang, Linshan
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 109 : 303 - 313
  • [37] THE MINKOWSKI CONTENT MEASURE FOR THE LIOUVILLE QUANTUM GRAVITY METRIC
    Gwynne, Ewain
    Sung, Jinwoo
    [J]. ANNALS OF PROBABILITY, 2024, 52 (02): : 658 - 712
  • [38] Liouville quantum gravity surfaces with boundary as matings of trees
    Ang, Morris
    Gwynne, Ewain
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01): : 1 - 53
  • [39] Quantum gravity, cosmology, (Liouville) strings and Lorentz invariance
    Mavromatos, NE
    [J]. BEYOND THE DESERT 2002: ACCELERATOR, NON-ACCELERATOR AND SPACE APPROACHES IN THE NEW MILLENIUM, 2003, : 3 - 28
  • [40] Uniqueness of the critical and supercritical Liouville quantum gravity metrics
    Ding, Jian
    Gwynne, Ewain
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (01) : 216 - 333