Lattice Structure and Linear Complexity Profile of Nonlinear Pseudorandom Number Generators

被引:0
|
作者
Gerhard Dorfer
Arne Winterhof
机构
[1] Department of Algebra and Computational Mathematics,
[2] Vienna University of Technology,undefined
[3] Wiedner Hauptstr. 8–10/118,undefined
[4] 1040 Vienna,undefined
[5] Austria (e-mail: g.dorfer@tuwien.ac.at),undefined
[6] Institute of Discrete Mathematics,undefined
[7] Austrian Academy of Sciences,undefined
[8] Fleischmarkt 20–22/2,undefined
[9] 1010 Vienna,undefined
[10] Austria (e-mail: gerhard.dorfer@oeaw.ac.at,undefined
[11] arne.winterhof@oeaw.ac.at),undefined
[12] Temasek Laboratories,undefined
[13] National University of Singapore,undefined
[14] 10 Kent Ridge Crescent,undefined
[15] Singapore 119260,undefined
[16] Republic of Singapore (e-mail: tslwa@nus.edu.sg),undefined
关键词
Number Generator; Quality Measure; Lattice Structure; Generalize Version; Finite Field;
D O I
暂无
中图分类号
学科分类号
摘要
 We extend a generalized version of Marsaglia's lattice test for sequences over finite fields to segments of sequences over an arbitrary field and show that linear complexity profile and this lattice test provide essentially equivalent quality measures for randomness.
引用
收藏
页码:499 / 508
页数:9
相关论文
共 50 条
  • [41] Security & pseudorandom number generators
    Laurie, B
    DR DOBBS JOURNAL, 2004, 29 (03): : 46 - 47
  • [42] A Dissection of Pseudorandom number Generators
    Ankur
    Divyanjali
    Bhardwaj, Trishansh
    2ND INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN) 2015, 2015, : 318 - 323
  • [43] Predicting masked linear pseudorandom number generators over finite fields
    Gutierrez, Jaime
    Ibeas, Alvar
    Gomez-Perez, Domingo
    Shparlinski, Igor E.
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 67 (03) : 395 - 402
  • [44] Predicting masked linear pseudorandom number generators over finite fields
    Jaime Gutierrez
    Álvar Ibeas
    Domingo Gómez-Pérez
    Igor E. Shparlinski
    Designs, Codes and Cryptography, 2013, 67 : 395 - 402
  • [45] PSEUDORANDOM NUMBER GENERATORS FOR VLSI SYSTEMS BASED ON LINEAR CELLULAR AUTOMATA
    TSALIDES, P
    YORK, TA
    THANAILAKIS, A
    IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1991, 138 (04): : 241 - 249
  • [46] Recent Results on Recursive Nonlinear Pseudorandom Number Generators (Invited Paper)
    Winterhof, Arne
    SEQUENCES AND THEIR APPLICATIONS-SETA 2010, 2010, 6338 : 113 - 124
  • [47] Maximally equidistributed pseudorandom number generators via linear output transformations
    Harase, Shin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (05) : 1512 - 1519
  • [48] Exponential sums of nonlinear congruential pseudorandom number generators with Redei functions
    Gutierrez, Jaime
    Winterhof, Arne
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (02) : 410 - 416
  • [49] Pseudorandom generators in propositional proof complexity
    Alekhnovich, M
    Ben-Sasson, E
    Razborov, AA
    Wigderson, A
    41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, : 43 - 53
  • [50] Pseudorandom generators in propositional proof complexity
    Alekhnovich, M
    Ben-Sasson, E
    Razborov, AA
    Wigderson, A
    SIAM JOURNAL ON COMPUTING, 2004, 34 (01) : 67 - 88