Pseudorandom generators in propositional proof complexity

被引:44
|
作者
Alekhnovich, M [1 ]
Ben-Sasson, E
Razborov, AA
Wigderson, A
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
[2] Hebrew Univ Jerusalem, Inst Comp Sci, Jerusalem, Israel
[3] VA Steklov Math Inst, Moscow 117333, Russia
[4] Inst Adv Study, Princeton, NJ 08540 USA
关键词
generator; propositional proof complexity; resolution; polynomial calculus;
D O I
10.1137/S0097539701389944
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We call a pseudorandom generator G(n) : {0, 1}(n) --> {0, 1}(m) hard for a propositional proof system P if P cannot efficiently prove the (properly encoded) statement G(n)(x(1),..., x(n)) not equal b for any string b is an element of{0, 1}(m). We consider a variety of "combinatorial" pseudorandom generators inspired by the Nisan-Wigderson generator on the one hand, and by the construction of Tseitin tautologies on the other. We prove that under certain circumstances these generators are hard for such proof systems as resolution, polynomial calculus, and polynomial calculus with resolution (PCR).
引用
收藏
页码:67 / 88
页数:22
相关论文
共 50 条
  • [1] Pseudorandom generators in propositional proof complexity
    Alekhnovich, M
    Ben-Sasson, E
    Razborov, AA
    Wigderson, A
    41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, : 43 - 53
  • [2] Propositional proof complexity
    Razborov, A
    JOURNAL OF THE ACM, 2003, 50 (01) : 80 - 82
  • [3] Proof Complexity of Propositional Default Logic
    Beyersdorff, Olaf
    Meier, Arne
    Mueller, Sebastian
    Thomas, Michael
    Vollmer, Heribert
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2010, PROCEEDINGS, 2010, 6175 : 30 - +
  • [4] Proof complexity of propositional default logic
    Beyersdorff, Olaf
    Meier, Arne
    Mueller, Sebastian
    Thomas, Michael
    Vollmer, Heribert
    ARCHIVE FOR MATHEMATICAL LOGIC, 2011, 50 (7-8): : 727 - 742
  • [5] Proof complexity of propositional default logic
    Olaf Beyersdorff
    Arne Meier
    Sebastian Müller
    Michael Thomas
    Heribert Vollmer
    Archive for Mathematical Logic, 2011, 50 : 727 - 742
  • [6] Analysis of the Linear Complexity in Pseudorandom Sequence Generators
    Fuster-Sabater, Amparo
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2013, PT V, 2013, 7975 : 407 - 420
  • [7] Analysis of the linear complexity in pseudorandom sequence generators
    Fuster-sabater, Amparo, 1600, Springer Verlag (7971):
  • [8] Statistical complexity measure of pseudorandom bit generators
    González, CM
    Larrondo, HA
    Rosso, OA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 354 : 281 - 300
  • [9] A New Kind of Tradeoffs in Propositional Proof Complexity
    Razborov, Alexander
    JOURNAL OF THE ACM, 2016, 63 (02)
  • [10] Intensive statistical complexity measure of pseudorandom number generators
    Larrondo, HA
    González, CM
    Martín, MT
    Plastino, A
    Rosso, OA
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (01) : 133 - 138