Proof Complexity of Propositional Default Logic

被引:0
|
作者
Beyersdorff, Olaf [1 ]
Meier, Arne [1 ]
Mueller, Sebastian [2 ]
Thomas, Michael [1 ]
Vollmer, Heribert [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Comp Sci, Hannover, Germany
[2] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
关键词
FREGE SYSTEMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Default logic is one of the most popular and successful formalisms for non-monotonic reasoning. In 2002, Bonatti and Olivetti introduced several sequent calculi for credulous and skeptical reasoning in propositional default logic. In this paper we examine these calculi from a proof-complexity perspective. In particular, we show that the calculus for credulous reasoning obeys almost the same bounds on the proof size as Gentzen's system LK. Hence proving lower bounds for credulous reasoning will be as hard as proving lower bounds for LK. On the other hand, we show an exponential lower bound to the proof size in Bonatti and Olivetti's enhanced calculus for skeptical default reasoning.
引用
收藏
页码:30 / +
页数:3
相关论文
共 50 条
  • [1] Proof complexity of propositional default logic
    Beyersdorff, Olaf
    Meier, Arne
    Mueller, Sebastian
    Thomas, Michael
    Vollmer, Heribert
    ARCHIVE FOR MATHEMATICAL LOGIC, 2011, 50 (7-8): : 727 - 742
  • [2] Proof complexity of propositional default logic
    Olaf Beyersdorff
    Arne Meier
    Sebastian Müller
    Michael Thomas
    Heribert Vollmer
    Archive for Mathematical Logic, 2011, 50 : 727 - 742
  • [3] Propositional proof complexity
    Razborov, A
    JOURNAL OF THE ACM, 2003, 50 (01) : 80 - 82
  • [4] The complexity of model checking for propositional default logics
    Liberatore, P
    Schaerf, M
    ECAI 1998: 13TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1998, : 18 - 22
  • [5] The complexity of model checking for propositional default logics
    Liberatore, P
    Schaerf, M
    DATA & KNOWLEDGE ENGINEERING, 2005, 55 (02) : 189 - 202
  • [6] Propositional proof compressions and DNF logic
    Gordeev, L.
    Haeusler, E. H.
    Pereira, L. C.
    LOGIC JOURNAL OF THE IGPL, 2011, 19 (01) : 62 - 86
  • [7] Pseudorandom generators in propositional proof complexity
    Alekhnovich, M
    Ben-Sasson, E
    Razborov, AA
    Wigderson, A
    41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, : 43 - 53
  • [8] Proof systems for effectively propositional logic
    Navarro, Juan Antonio
    Voronkov, Andrei
    AUTOMATED REASONING, PROCEEDINGS, 2008, 5195 : 426 - 440
  • [9] Pseudorandom generators in propositional proof complexity
    Alekhnovich, M
    Ben-Sasson, E
    Razborov, AA
    Wigderson, A
    SIAM JOURNAL ON COMPUTING, 2004, 34 (01) : 67 - 88
  • [10] On the complexity of propositional quantification in intuitionistic logic
    Kremer, P
    JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (02) : 529 - 544