Pseudorandom generators in propositional proof complexity

被引:44
|
作者
Alekhnovich, M [1 ]
Ben-Sasson, E
Razborov, AA
Wigderson, A
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
[2] Hebrew Univ Jerusalem, Inst Comp Sci, Jerusalem, Israel
[3] VA Steklov Math Inst, Moscow 117333, Russia
[4] Inst Adv Study, Princeton, NJ 08540 USA
关键词
generator; propositional proof complexity; resolution; polynomial calculus;
D O I
10.1137/S0097539701389944
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We call a pseudorandom generator G(n) : {0, 1}(n) --> {0, 1}(m) hard for a propositional proof system P if P cannot efficiently prove the (properly encoded) statement G(n)(x(1),..., x(n)) not equal b for any string b is an element of{0, 1}(m). We consider a variety of "combinatorial" pseudorandom generators inspired by the Nisan-Wigderson generator on the one hand, and by the construction of Tseitin tautologies on the other. We prove that under certain circumstances these generators are hard for such proof systems as resolution, polynomial calculus, and polynomial calculus with resolution (PCR).
引用
收藏
页码:67 / 88
页数:22
相关论文
共 50 条