Uncertainty in non-CO2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility

被引:0
|
作者
Mathijs Harmsen
Charlotte Tabak
Lena Höglund-Isaksson
Florian Humpenöder
Pallav Purohit
Detlef van Vuuren
机构
[1] PBL Netherlands Environmental Assessment Agency,Copernicus Institute of Sustainable Development
[2] Utrecht University,Potsdam Institute for Climate Impact Research (PIK)
[3] Pollution Management Group,undefined
[4] International Institute for Applied Systems Analysis,undefined
[5] Member of the Leibniz Association,undefined
[6] Potsdam,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Despite its projected crucial role in stringent, future global climate policy, non-CO2 greenhouse gas (NCGG) mitigation remains a large uncertain factor in climate research. A revision of the estimated mitigation potential has implications for the feasibility of global climate policy to reach the Paris Agreement climate goals. Here, we provide a systematic bottom-up estimate of the total uncertainty in NCGG mitigation, by developing ‘optimistic’, ‘default’ and ‘pessimistic’ long-term NCGG marginal abatement cost (MAC) curves, based on a comprehensive literature review of mitigation options. The global 1.5-degree climate target is found to be out of reach under pessimistic MAC assumptions, as is the 2-degree target under high emission assumptions. In a 2-degree scenario, MAC uncertainty translates into a large projected range in relative NCGG reduction (40–58%), carbon budget (±120 Gt CO2) and policy costs (±16%). Partly, the MAC uncertainty signifies a gap that could be bridged by human efforts, but largely it indicates uncertainty in technical limitations.
引用
收藏
相关论文
共 50 条
  • [21] Non-CO2 greenhouse gases: the underrepresented, complex side of the climate challenge
    Harmsen, Mathijs
    Student, Jillian
    Kroeze, Carolien
    [J]. JOURNAL OF INTEGRATIVE ENVIRONMENTAL SCIENCES, 2020, 17 (03)
  • [22] An overview of non-CO2 greenhouse gases
    Pulles, Tinus
    van Amstel, Andre
    [J]. JOURNAL OF INTEGRATIVE ENVIRONMENTAL SCIENCES, 2010, 7 : 3 - 19
  • [23] The importance of non-CO2 greenhouse gases
    Kroeze, Carolien
    Pulles, Tinus
    [J]. JOURNAL OF INTEGRATIVE ENVIRONMENTAL SCIENCES, 2015, 12 : 1 - 4
  • [24] Non-CO2 greenhouse gases in the atmosphere
    Khalil, MAK
    [J]. ANNUAL REVIEW OF ENERGY AND THE ENVIRONMENT, 1999, 24 : 645 - 661
  • [25] The non-CO2 greenhouse gases network
    Gale, J
    de La Cheshnaye, F
    Vianio, M
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES, VOLS I AND II, PROCEEDINGS, 2003, : 1787 - 1790
  • [26] Inverse transport modeling of non-CO2 greenhouse gas emissions of Europe
    Vermeulen, AT
    van Loon, M
    Builtjes, PJH
    Erisman, JW
    [J]. AIR POLLUTION MODELING AND ITS APPLICATION XIV, 2001, : 631 - 640
  • [27] EFFECTIVENESS OF NON-CO2 GREENHOUSE-GAS EMISSION REDUCTION TECHNOLOGIES
    BLOK, K
    DEJAGER, D
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 1994, 31 (1-2) : 17 - 40
  • [28] The Strategy and Technology Selection for Non-CO2 Greenhouse Gas Emission Control
    Zhou Ya-Min
    Feng Yong-Sheng
    [J]. ADVANCES IN CLIMATE CHANGE RESEARCH, 2014, 5 (01) : 28 - 33
  • [29] The Strategy and Technology Selection for Non-CO2 Greenhouse Gas Emission Control
    ZHOU Ya-Min
    FENG Yong-Sheng
    [J]. Advances in Climate Change Research, 2014, 5 (01) : 28 - 33
  • [30] Non-CO2 greenhouse gas separation using advanced porous materials
    Zhao, Yan-Long
    Zhang, Xin
    Li, Mu-Zi
    Li, Jian-Rong
    [J]. CHEMICAL SOCIETY REVIEWS, 2024, 53 (04) : 2056 - 2098