EFFECTIVENESS OF NON-CO2 GREENHOUSE-GAS EMISSION REDUCTION TECHNOLOGIES

被引:11
|
作者
BLOK, K
DEJAGER, D
机构
[1] Department of Science, Technology and Society Padualaan 14, Utrecht University, Utrecht
[2] Ecofys Research and Consultancy, Utrecht, NL-3503 RK
关键词
D O I
10.1007/BF00547178
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Non-CO2 greenhouse gases, such as methane and nitrous oxide, can make a relevant contribution to the enhanced greenhouse effect, and hence emission reduction is desirable. In emission reduction inventories, both the magnitude of the emission reduction as well as the specific emission reduction costs should be determined. The current knowledge of the potential for and costs of reducing these emissions is still limited. Taking this into account, the following results can be obtained. Methane emissions can be considerably reduced from underground coal mining, oil production, natural gas operations, landfilling of waste, and wastewater treatment. Also emissions from enteric fermentation and animal manure can be reduced substantially. The total technical potential for methane emission reduction (given the present activity level) is estimated to be about one third. The economic potential, having net negative emission reduction costs, is estimated to be about half of this value. These reductions can be attained over a period of 10 - 20 years. The technical potential for the reduction of nitrous oxide emissions is currently estimated to be less than 10% Apart from the possibility of implementing existing techniques, there seems to be considerable room for developing techniques for more far-reaching emission reductions both for methane and nitrous oxide.
引用
收藏
页码:17 / 40
页数:24
相关论文
共 50 条
  • [1] Emission reduction of non-CO2 greenhouse gases used as refrigerant
    van Gerwen, RJM
    Verwoerd, M
    [J]. NON-CO2 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL AND IMPLEMENTATION, 2000, : 377 - 384
  • [2] Non-CO2 greenhouse gas policy and quality of emission estimates
    Berdowski, JJM
    Oonk, H
    [J]. NON-CO2 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL AND IMPLEMENTATION, 2000, : 499 - 506
  • [3] The Strategy and Technology Selection for Non-CO2 Greenhouse Gas Emission Control
    Zhou Ya-Min
    Feng Yong-Sheng
    [J]. ADVANCES IN CLIMATE CHANGE RESEARCH, 2014, 5 (01) : 28 - 33
  • [4] The Strategy and Technology Selection for Non-CO2 Greenhouse Gas Emission Control
    ZHOU Ya-Min
    FENG Yong-Sheng
    [J]. Advances in Climate Change Research, 2014, 5 (01) : 28 - 33
  • [5] Modeling non-CO2 Greenhouse Gas Abatement
    Robert C. Hyman
    John M. Reilly
    Mustafa H. Babiker
    Ardoin De Masin
    Henry D. Jacoby
    [J]. Environmental Modeling & Assessment, 2003, 8 : 175 - 186
  • [6] Improvement of non-CO2 greenhouse gas emission estimates for oil and gas operations in Russia
    Uvarova, Nina E.
    [J]. JOURNAL OF INTEGRATIVE ENVIRONMENTAL SCIENCES, 2012, 9 : 191 - 197
  • [7] Modeling non-CO2 greenhouse gas abatement
    Hyman, RC
    Reilly, JM
    Babiker, MH
    De Masin, A
    Jacoby, HD
    [J]. ENVIRONMENTAL MODELING & ASSESSMENT, 2003, 8 (03) : 175 - 186
  • [8] On the impact of inventory uncertainties on non-CO2 greenhouse gas emissions reduction options
    Hilhorst, MA
    de Mol, RM
    Cozijnsen, CJH
    [J]. NON-C02 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL OPTIONS AND POLICY ASPECTS, 2002, : 575 - 576
  • [9] Emission reduction potential and costs for non-CO2 greenhouse gases in the EU-15
    de Jager, D
    Hendriks, CA
    Heijnes, HAM
    Blok, K
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES, 1999, : 503 - 508
  • [10] The combustion mitigation of methane as a non-CO2 greenhouse gas
    Jiang, X.
    Mira, D.
    Cluff, D. L.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 66 : 176 - 199