Improvement of non-CO2 greenhouse gas emission estimates for oil and gas operations in Russia

被引:1
|
作者
Uvarova, Nina E. [1 ]
机构
[1] Inst Global Climate & Ecol, Moscow 107258, Russia
关键词
greenhouse gases; emissions; methane; nitrous oxide; inventory uncertainty; oil and gas sector;
D O I
10.1080/1943815X.2012.709252
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Oil and gas is a key sector for greenhouse gas inventory of the Russian Federation represented by non-CO2 greenhouse gases methane (CH4) and nitrous oxide (N2O). The CH4 and N2O emission estimates are mainly performed with the use of default method (IPCC 2000). As a result of continuous inventory improvement, the national parameters for oil and gas sector were derived and IPCC methodology was adjusted. The parameters were developed on the basis of specific features of producing industry and the properties of oil and gas produced. These developments enabled a shift to tier 2 estimation approach (IPCC 2006). The aim of the study was to highlight the differences between both estimation methods. For this purpose, the CH4 and N2O emissions were estimated from 1990 to 2009 with the use of default (tier 1) and a combination of tier 1 and tier 2 methods. The results of the estimates were compared and their uncertainty assessed. The results of comparison showed insignificant differences in the emission profile. The uncertainty of the combined tier 1 and tier 2 estimates was lower than of those performed with the tier 1 (15% and 23%, respectively). Thus, the use of higher tier increases the reliability of the inventory for oil and gas sector.
引用
收藏
页码:191 / 197
页数:7
相关论文
共 50 条
  • [1] Non-CO2 greenhouse gas policy and quality of emission estimates
    Berdowski, JJM
    Oonk, H
    [J]. NON-CO2 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL AND IMPLEMENTATION, 2000, : 499 - 506
  • [2] Non-CO2 greenhouse gas emissions from agricultural sector in Russia
    Romanovskaya, AA
    Gytarsky, ML
    Karaban, RT
    Nazarov, IM
    Konyushkov, DE
    [J]. NON-C02 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL OPTIONS AND POLICY ASPECTS, 2002, : 29 - 34
  • [3] EFFECTIVENESS OF NON-CO2 GREENHOUSE-GAS EMISSION REDUCTION TECHNOLOGIES
    BLOK, K
    DEJAGER, D
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 1994, 31 (1-2) : 17 - 40
  • [4] The Strategy and Technology Selection for Non-CO2 Greenhouse Gas Emission Control
    Zhou Ya-Min
    Feng Yong-Sheng
    [J]. ADVANCES IN CLIMATE CHANGE RESEARCH, 2014, 5 (01) : 28 - 33
  • [5] The Strategy and Technology Selection for Non-CO2 Greenhouse Gas Emission Control
    ZHOU Ya-Min
    FENG Yong-Sheng
    [J]. Advances in Climate Change Research, 2014, 5 (01) : 28 - 33
  • [6] Modeling non-CO2 Greenhouse Gas Abatement
    Robert C. Hyman
    John M. Reilly
    Mustafa H. Babiker
    Ardoin De Masin
    Henry D. Jacoby
    [J]. Environmental Modeling & Assessment, 2003, 8 : 175 - 186
  • [7] Modeling non-CO2 greenhouse gas abatement
    Hyman, RC
    Reilly, JM
    Babiker, MH
    De Masin, A
    Jacoby, HD
    [J]. ENVIRONMENTAL MODELING & ASSESSMENT, 2003, 8 (03) : 175 - 186
  • [8] Non-CO2 greenhouse gas emissions from palm oil production in Thailand
    Saswattecha, Kanokwan
    Romero, Melissa Cuevas
    Hein, Lars
    Jawjit, Warit
    Kroeze, Carolien
    [J]. JOURNAL OF INTEGRATIVE ENVIRONMENTAL SCIENCES, 2015, 12 : 67 - 85
  • [9] The combustion mitigation of methane as a non-CO2 greenhouse gas
    Jiang, X.
    Mira, D.
    Cluff, D. L.
    [J]. PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 66 : 176 - 199
  • [10] NON-CO2 GASEOUS EMISSIONS FROM UPSTREAM OIL AND GAS OPERATIONS IN NIGERIA
    OBIOH, IB
    OLUWOLE, AF
    AKEREDOLU, FA
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 1994, 31 (1-2) : 67 - 72