On the Shape of the Eshelby Inclusions

被引:0
|
作者
Xanthippi Markenscoff
机构
[1] University of California,Department of Applied Mechanics and Engineering Sciences
来源
Journal of Elasticity | 1997年 / 49卷
关键词
inclusions; eigenstress; inverse problems;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown, based on properties of analytic functions, that for inclusions of constant eigenstrain and eigenstress that the shape of the inclusion is restricted and any part of a plane (i.e. polyhedral inclusion) is prohibited.
引用
收藏
页码:163 / 166
页数:3
相关论文
共 50 条
  • [31] ESHELBY TENSORS FOR ONE-DIMENSIONAL PIEZOELECTRIC QUASICRYSTAL MATERIALS WITH ELLIPSOIDAL INCLUSIONS
    Hu, Zhiming
    Zhang, Liangliang
    Gao, Yang
    PROCEEDINGS OF THE 2020 15TH SYMPOSIUM ON PIEZOELECTRCITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2021, : 474 - 479
  • [32] An Eshelby inclusion of arbitrary shape in a nonlinearly coupled thermoelectric material
    Xu Wang
    Peter Schiavone
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [33] Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes
    Pan, E
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (03) : 567 - 589
  • [34] Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model
    Albaret, T.
    Tanguy, A.
    Boioli, F.
    Rodney, D.
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [35] Analytical expression of the Eshelby tensor for arbitrary polygonal inclusions in two-dimensional elasticity
    Trotta, S.
    Marmo, F.
    Rosati, L.
    COMPOSITES PART B-ENGINEERING, 2016, 106 : 48 - 58
  • [36] Exact solution of Eshelby-Christensen problem in gradient elasticity for composites with spherical inclusions
    Lurie, Sergey
    Volkov-Bogorodskii, Dmitrii
    Tuchkova, Natalia
    ACTA MECHANICA, 2016, 227 (01) : 127 - 138
  • [37] The quasi Eshelby property for rotational symmetrical inclusions of uniform eigencurvatures within an infinite plate
    Xu, BX
    Wang, MZ
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2061): : 2899 - 2910
  • [38] On the Displacement of a Two-Dimensional Eshelby Inclusion of Elliptic Cylindrical Shape
    Jin, Xiaoqing
    Zhang, Xiangning
    Li, Pu
    Xu, Zheng
    Hu, Yumei
    Keer, Leon M.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2017, 84 (07):
  • [39] ANALYTICAL SOLUTION FOR THE STRESS FIELD OF ESHELBY'S INCLUSION OF POLYGONAL SHAPE
    Jin, Xiaoqing
    Keer, Leon M.
    Wang, Qian
    PROCEEDINGS OF THE ASME/STLE INTERNATIONAL JOINT TRIBOLOGY CONFERENCE - 2009, 2010, : 487 - 489
  • [40] Comments on “Eshelby inclusion of arbitrary shape in an anisotropic plane or half–plane”
    P. A. A. Laura
    D. V. Bambill
    Acta Mechanica, 2003, 164 : 113 - 114