On the Shape of the Eshelby Inclusions

被引:0
|
作者
Xanthippi Markenscoff
机构
[1] University of California,Department of Applied Mechanics and Engineering Sciences
来源
Journal of Elasticity | 1997年 / 49卷
关键词
inclusions; eigenstress; inverse problems;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown, based on properties of analytic functions, that for inclusions of constant eigenstrain and eigenstress that the shape of the inclusion is restricted and any part of a plane (i.e. polyhedral inclusion) is prohibited.
引用
收藏
页码:163 / 166
页数:3
相关论文
共 50 条
  • [21] Eshelby problem in continuous shape transition of helical inclusion
    Muraishi, Shinji
    Taya, Minoru
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 199 : 36 - 42
  • [22] TWO-DIMENSIONAL PIEZOELECTRIC QUASICRYSTAL ESHELBY TENSORS FOR AN ELLIPTICAL INCLUSIONS
    Fu, Xiaoyu
    Zhang, Jinming
    Zhang, Liangliang
    Gao, Yang
    2022 16TH SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS, SPAWDA, 2022, : 751 - 755
  • [23] Eshelby's solution for ellipsoidal inhomogeneous inclusions with applications to compaction bands
    Meng, Chunfang
    Pollard, David D.
    JOURNAL OF STRUCTURAL GEOLOGY, 2014, 67 : 1 - 19
  • [24] An Eshelby inclusion of parabolic shape in an anisotropic elastic plane
    Yang, Ping
    Wang, Xu
    Schiavone, Peter
    MECHANICS OF MATERIALS, 2021, 155
  • [25] Exact solution of Eshelby–Christensen problem in gradient elasticity for composites with spherical inclusions
    Sergey Lurie
    Dmitrii Volkov-Bogorodskii
    Natalia Tuchkova
    Acta Mechanica, 2016, 227 : 127 - 138
  • [26] An Eshelby inclusion of arbitrary shape in a nonlinearly coupled thermoelectric material
    Wang, Xu
    Schiavone, Peter
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [27] Effective anisotropic stiffness of inclusions with debonded interface for Eshelby-based models
    Jain, Atul
    Abdin, Yasmine
    Van Paepegem, Wim
    Verpoest, Ignaas
    Lomov, Stepan V.
    COMPOSITE STRUCTURES, 2015, 131 : 692 - 706
  • [28] On numerical evaluation of Eshelby tensor for superspherical and superellipsoidal inclusions in isotropic elastic material
    Yanase, Keiji
    Chatterjee, Hirak
    Ghosh, Sujit Kumar
    COMPOSITES PART B-ENGINEERING, 2020, 192
  • [29] On self-similarly expanding Eshelby inclusions: Spherical inclusion with dilatational eigenstrain
    Ni, Luqun
    Markenscoff, Xanthippi
    MECHANICS OF MATERIALS, 2015, 90 : 30 - 36
  • [30] A coupled fictitious stress method and Eshelby inclusions as a meshless technique for inhomogeneity problems
    Kamal, M. A.
    Rashed, Youssef F.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 134 : 117 - 138