Regularity, matchings and Cameron–Walker graphs

被引:0
|
作者
Tran Nam Trung
机构
[1] VAST,Institute of Mathematics
[2] Thang Long University,TIMAS
来源
Collectanea Mathematica | 2020年 / 71卷
关键词
Regularity; Edge ideal; Matching; Cameron–Walker graph; 13D02; 05E40; 05E45;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple graph and let β(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (G)$$\end{document} be the matching number of G. It is well-known that regI(G)⩽β(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{reg}\,}}I(G) \leqslant \beta (G)+1$$\end{document}. In this paper we show that regI(G)=β(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{reg}\,}}I(G) = \beta (G)+1$$\end{document} if and only if every connected component of G is either a pentagon or a Cameron–Walker graph.
引用
收藏
页码:83 / 91
页数:8
相关论文
共 50 条
  • [1] Regularity, matchings and Cameron-Walker graphs
    Trung, Tran Nam
    [J]. COLLECTANEA MATHEMATICA, 2020, 71 (01) : 83 - 91
  • [2] Regularity and a-invariant of Cameron-Walker graphs
    Hibi, Takayuki
    Kimura, Kyouko
    Matsuda, Kazunori
    Tsuchiya, Akiyoshi
    [J]. JOURNAL OF ALGEBRA, 2021, 584 : 215 - 242
  • [3] Regularity of symbolic powers of edge ideals of Cameron-Walker graphs
    Seyed Fakhari, S. A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5215 - 5223
  • [4] Matchings in graphs of odd regularity and girth
    Costa, Vitor
    Dantas, Simone
    Rautenbach, Dieter
    [J]. DISCRETE MATHEMATICS, 2013, 313 (24) : 2895 - 2902
  • [5] Algebraic study on Cameron-Walker graphs
    Hibi, Takayuki
    Higashitani, Akihiro
    Kimura, Kyouko
    O'Keefe, Augustine B.
    [J]. JOURNAL OF ALGEBRA, 2015, 422 : 257 - 269
  • [6] HOMOLOGICAL INVARIANTS OF CAMERON-WALKER GRAPHS
    Hibi, Takayuki
    Kanno, Hiroju
    Kimura, Kyouko
    Matsuda, Kazunori
    Van Tuyl, Adam
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (09) : 6559 - 6582
  • [7] PRIME GRAPHS, MATCHINGS AND THE CASTELNUOVO-MUMFORD REGULARITY
    Biyikoglu, Turker
    Civan, Yusuf
    [J]. JOURNAL OF COMMUTATIVE ALGEBRA, 2019, 11 (01) : 1 - 27
  • [8] Dominating induced matchings of finite graphs and regularity of edge ideals
    Hibi, Takayuki
    Higashitani, Akihiro
    Kimura, Kyouko
    Tsuchiya, Akiyoshi
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (01) : 173 - 198
  • [9] Dominating induced matchings of finite graphs and regularity of edge ideals
    Takayuki Hibi
    Akihiro Higashitani
    Kyouko Kimura
    Akiyoshi Tsuchiya
    [J]. Journal of Algebraic Combinatorics, 2016, 43 : 173 - 198
  • [10] On matchings in graphs
    Jones, DM
    Roehm, DJ
    Schultz, M
    [J]. ARS COMBINATORIA, 1998, 50 : 65 - 79