Regularity, matchings and Cameron–Walker graphs

被引:0
|
作者
Tran Nam Trung
机构
[1] VAST,Institute of Mathematics
[2] Thang Long University,TIMAS
来源
Collectanea Mathematica | 2020年 / 71卷
关键词
Regularity; Edge ideal; Matching; Cameron–Walker graph; 13D02; 05E40; 05E45;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple graph and let β(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (G)$$\end{document} be the matching number of G. It is well-known that regI(G)⩽β(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{reg}\,}}I(G) \leqslant \beta (G)+1$$\end{document}. In this paper we show that regI(G)=β(G)+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{reg}\,}}I(G) = \beta (G)+1$$\end{document} if and only if every connected component of G is either a pentagon or a Cameron–Walker graph.
引用
收藏
页码:83 / 91
页数:8
相关论文
共 50 条
  • [31] Popular Matchings in Complete Graphs
    Ágnes Cseh
    Telikepalli Kavitha
    [J]. Algorithmica, 2021, 83 : 1493 - 1523
  • [32] On maximal matchings of connected graphs
    Xu, BG
    [J]. ACTA MATHEMATICA SCIENTIA, 2004, 24 (04) : 603 - 607
  • [33] Random Matchings in Regular Graphs
    Jeff Kahn
    Jeong Han Kim
    [J]. Combinatorica, 1998, 18 : 201 - 226
  • [34] On graphs with perfect internal matchings
    [J]. Acta Cybern, 2 (111):
  • [35] EXTENDING MATCHINGS IN GRAPHS - A SURVEY
    PLUMMER, MD
    [J]. DISCRETE MATHEMATICS, 1994, 127 (1-3) : 277 - 292
  • [36] On matchings in stochastic Kronecker graphs
    Banaszak, Justyna
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (04):
  • [37] The cost of perfection for matchings in graphs
    Brazil, E. V.
    de Figueiredo, C. M. H.
    da Fonseca, G. D.
    Sasaki, D.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 210 : 112 - 122
  • [38] Induced matchings in intersection graphs
    Cameron, K
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 1 - 9
  • [39] Spectral radius and matchings in graphs
    Suil, O.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 316 - 324
  • [40] ON CUTS AND MATCHINGS IN PLANAR GRAPHS
    BARAHONA, F
    [J]. MATHEMATICAL PROGRAMMING, 1993, 60 (01) : 53 - 68