HOMOLOGICAL INVARIANTS OF CAMERON-WALKER GRAPHS

被引:5
|
作者
Hibi, Takayuki [1 ]
Kanno, Hiroju [1 ]
Kimura, Kyouko [2 ]
Matsuda, Kazunori [3 ]
Van Tuyl, Adam [4 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
[2] Shizuoka Univ, Fac Sci, Dept Math, Suruga Ku, 836 Ohya, Shizuoka 4228529, Japan
[3] Kitami Inst Technol, Kitami, Hokkaido 0908507, Japan
[4] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4L8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Edge ideal; dimension; depth; Castelnuovo-Mumford regularity; h-polynomials; EDGE IDEALS; INDEPENDENCE; REGULARITY; NUMBERS;
D O I
10.1090/tran/8416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite simple connected graph on [n] and R = K[x(1), ..., x(n)] the polynomial ring in n variables over a field K. The edge ideal of G is the ideal I(G) of R which is generated by those monomials x(i)x(j) for which {i, j} is an edge of G. In the present paper, the possible tuples (n, depth(R/I(G)), reg(R/I(G)), dim R/I(G), deg h(R/I(G))), where deg h(R/I(G)) is the degree of the h-polynomial of R/I(G), arising from Cameron-Walker graphs on [n] will be completely determined.
引用
收藏
页码:6559 / 6582
页数:24
相关论文
共 50 条
  • [1] Algebraic study on Cameron-Walker graphs
    Hibi, Takayuki
    Higashitani, Akihiro
    Kimura, Kyouko
    O'Keefe, Augustine B.
    [J]. JOURNAL OF ALGEBRA, 2015, 422 : 257 - 269
  • [2] Regularity, matchings and Cameron-Walker graphs
    Trung, Tran Nam
    [J]. COLLECTANEA MATHEMATICA, 2020, 71 (01) : 83 - 91
  • [3] Regularity and a-invariant of Cameron-Walker graphs
    Hibi, Takayuki
    Kimura, Kyouko
    Matsuda, Kazunori
    Tsuchiya, Akiyoshi
    [J]. JOURNAL OF ALGEBRA, 2021, 584 : 215 - 242
  • [4] Regularity of symbolic powers of edge ideals of Cameron-Walker graphs
    Seyed Fakhari, S. A.
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) : 5215 - 5223
  • [6] Regularity, matchings and Cameron–Walker graphs
    Tran Nam Trung
    [J]. Collectanea Mathematica, 2020, 71 : 83 - 91
  • [7] Certain homological invariants of bipartite kneser graphs
    Kumar, Ajay
    Singh, Pavinder
    Verma, Rohit
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (10)
  • [8] HOMOLOGICAL INVARIANTS OF RINGS
    GULLIKSE.TH
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 532 - &
  • [9] Powers of sums and their homological invariants
    Nguyen, Hop D.
    Thanh Vu
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (07) : 3081 - 3111
  • [10] Homological invariants of determinantal thickenings
    Raicu, Claudiu
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2017, 60 (04): : 425 - 446