HOMOLOGICAL INVARIANTS OF CAMERON-WALKER GRAPHS

被引:5
|
作者
Hibi, Takayuki [1 ]
Kanno, Hiroju [1 ]
Kimura, Kyouko [2 ]
Matsuda, Kazunori [3 ]
Van Tuyl, Adam [4 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
[2] Shizuoka Univ, Fac Sci, Dept Math, Suruga Ku, 836 Ohya, Shizuoka 4228529, Japan
[3] Kitami Inst Technol, Kitami, Hokkaido 0908507, Japan
[4] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4L8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Edge ideal; dimension; depth; Castelnuovo-Mumford regularity; h-polynomials; EDGE IDEALS; INDEPENDENCE; REGULARITY; NUMBERS;
D O I
10.1090/tran/8416
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite simple connected graph on [n] and R = K[x(1), ..., x(n)] the polynomial ring in n variables over a field K. The edge ideal of G is the ideal I(G) of R which is generated by those monomials x(i)x(j) for which {i, j} is an edge of G. In the present paper, the possible tuples (n, depth(R/I(G)), reg(R/I(G)), dim R/I(G), deg h(R/I(G))), where deg h(R/I(G)) is the degree of the h-polynomial of R/I(G), arising from Cameron-Walker graphs on [n] will be completely determined.
引用
收藏
页码:6559 / 6582
页数:24
相关论文
共 50 条