It is proved that when R is a local ring of positive characteristic, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi\colon R{\to} R}$$\end{document} is its Frobenius endomorphism, and some non-zero finite R-module has finite flat dimension or finite injective dimension for the R-module structure induced through \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi}$$\end{document} , then R is regular. This broad generalization of Kunz’s characterization of regularity in positive characteristic is deduced from a theorem concerning a local ring R with residue field of k of arbitrary characteristic: If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi}$$\end{document} is a contracting endomorphism of R, then the Betti numbers and the Bass numbers over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi}$$\end{document} of any non-zero finitely generated R-module grow at the same rate, on an exponential scale, as the Betti numbers of k over R.
机构:
Univ Calif Riverside, Dept Math, Riverside, CA 92521 USAUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA
Gan, Wee Liang
Li, Liping
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, LCSM Minist Educ, Sch Math & Stat, Changsha 410081, Hunan, Peoples R ChinaUniv Calif Riverside, Dept Math, Riverside, CA 92521 USA