Homological invariants of modules over contracting endomorphisms

被引:0
|
作者
Luchezar L. Avramov
Melvin Hochster
Srikanth B. Iyengar
Yongwei Yao
机构
[1] University of Nebraska,Department of Mathematics
[2] University of Michigan,Department of Mathematics
[3] Georgia State University,Department of Mathematics and Statistics
来源
Mathematische Annalen | 2012年 / 353卷
关键词
13D05; 13D02; 13H05;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that when R is a local ring of positive characteristic, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi\colon R{\to} R}$$\end{document} is its Frobenius endomorphism, and some non-zero finite R-module has finite flat dimension or finite injective dimension for the R-module structure induced through \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} , then R is regular. This broad generalization of Kunz’s characterization of regularity in positive characteristic is deduced from a theorem concerning a local ring R with residue field of k of arbitrary characteristic: If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} is a contracting endomorphism of R, then the Betti numbers and the Bass numbers over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} of any non-zero finitely generated R-module grow at the same rate, on an exponential scale, as the Betti numbers of k over R.
引用
收藏
页码:275 / 291
页数:16
相关论文
共 50 条