Comparison of image quality of two versions of deep-learning image reconstruction algorithm on a rapid kV-switching CT: a phantom study

被引:0
|
作者
Djamel Dabli
Maeliss Loisy
Julien Frandon
Fabien de Oliveira
Azhar Mohamad Meerun
Boris Guiu
Jean-Paul Beregi
Joël Greffier
机构
[1] IMAGINE UR UM 103,Department of Medical Imaging
[2] Montpellier University,undefined
[3] Nîmes University Hospital,undefined
[4] Saint-Eloi University Hospital,undefined
关键词
Abdomen; Contrast media; Deep learning; Image processing (computer assisted); Phantoms (imaging);
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Comparison of image quality of two versions of deep-learning image reconstruction algorithm on a rapid kV-switching CT: a phantom study
    Dabli, Djamel
    Loisy, Maeliss
    Frandon, Julien
    de Oliveira, Fabien
    Meerun, Azhar Mohamad
    Guiu, Boris
    Beregi, Jean-Paul
    Greffier, Joel
    [J]. EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [2] Comparison of two versions of a deep learning image reconstruction algorithm on CT image quality and dose reduction: A phantom study
    Greffier, Joel
    Dabli, Djamel
    Frandon, Julien
    Hamard, Aymeric
    Belaouni, Asmaa
    Akessoul, Philippe
    Fuamba, Yannick
    Le Roy, Julien
    Guiu, Boris
    Beregi, Jean-Paul
    [J]. MEDICAL PHYSICS, 2021, 48 (10) : 5743 - 5755
  • [3] Comparison of two deep-learning image reconstruction algorithms on cardiac CT images: A phantom study
    Greffier, Joel
    Pastor, Maxime
    Si-Mohamed, Salim
    Goutain-Majorel, Cynthia
    Peudon-Balas, Aude
    Bensalah, Mourad Zoubir
    Frandon, Julien
    Beregi, Jean-Paul
    Dabli, Djamel
    [J]. DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2024, 105 (03) : 110 - 117
  • [4] Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study
    Joël Greffier
    Quentin Durand
    Julien Frandon
    Salim Si-Mohamed
    Maeliss Loisy
    Fabien de Oliveira
    Jean-Paul Beregi
    Djamel Dabli
    [J]. European Radiology, 2023, 33 : 699 - 710
  • [5] Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study
    Greffier, Joel
    Durand, Quentin
    Frandon, Julien
    Si-Mohamed, Salim
    Loisy, Maeliss
    de Oliveira, Fabien
    Beregi, Jean-Paul
    Dabli, Djamel
    [J]. EUROPEAN RADIOLOGY, 2023, 33 (01) : 699 - 710
  • [6] Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
    Greffier, Joel
    Hamard, Aymeric
    Pereira, Fabricio
    Barrau, Corinne
    Pasquier, Hugo
    Beregi, Jean Paul
    Frandon, Julien
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (07) : 3951 - 3959
  • [7] Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
    Joël Greffier
    Aymeric Hamard
    Fabricio Pereira
    Corinne Barrau
    Hugo Pasquier
    Jean Paul Beregi
    Julien Frandon
    [J]. European Radiology, 2020, 30 : 3951 - 3959
  • [8] Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study
    Greffier, Joel
    Si-Mohamed, Salim
    Frandon, Julien
    Loisy, Maeliss
    de Oliveira, Fabien
    Beregi, Jean Paul
    Dabli, Djamel
    [J]. MEDICAL PHYSICS, 2022, 49 (08) : 5052 - 5063
  • [9] Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics
    Higaki, Toru
    Nakamura, Yuko
    Zhou, Jian
    Yu, Zhou
    Nemoto, Takuya
    Tatsugami, Fuminari
    Awai, Kazuo
    [J]. ACADEMIC RADIOLOGY, 2020, 27 (01) : 82 - 87
  • [10] A cascaded deep-learning reconstruction method for sparse-view kV-switching dual-energy CT
    Zhang, Ruoqiao
    Zhou, Jian
    Yu, Zhou
    [J]. MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312