Exact relaxations of non-convex variational problems

被引:0
|
作者
René Meziat
Diego Patiño
机构
[1] Universidad de los Andes,Departamento de Matemáticas
来源
Optimization Letters | 2008年 / 2卷
关键词
Calculus of variations; Convex analysis; Semidefinite programming; Multidimensional moment problem;
D O I
暂无
中图分类号
学科分类号
摘要
Here, we solve non-convex, variational problems given in the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min_{u} I(u) = \int\limits_{0}^{1} f(u'(x))dx \quad {\rm s.t.} \quad u(0) = 0, u(1) = a, \quad(1)$$\end{document}where u ∈ (W1,∞(0, 1))k and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : {\mathbb{R}}^k \rightarrow {\mathbb{R}}$$\end{document} is a non-convex, coercive polynomial. To solve (1) we analyse the convex hull of the integrand at the point a, so that we can find vectors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a^1,\ldots,a^N \in {\mathbb{R}}^k$$\end{document} and positive values λ1, . . . , λN satisfying the non-linear equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1, a, f_c(a)) = \sum\limits_{i=1}^{N}\lambda_i(1, a^i, f(a^i)). \quad (2)$$\end{document}Thus, we can calculate minimizers of (1) by following a proposal of Dacorogna in (Direct Methods in the Calculus of Variations. Springer, Heidelberg, 1989). Indeed, we can solve (2) by using a semidefinite program based on multidimensional moments.
引用
收藏
页码:505 / 519
页数:14
相关论文
共 50 条
  • [41] Semidefinite relaxations for non-convex quadratic mixed-integer programming
    Buchheim, Christoph
    Wiegele, Angelika
    MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 435 - 452
  • [42] Semidefinite relaxations for non-convex quadratic mixed-integer programming
    Christoph Buchheim
    Angelika Wiegele
    Mathematical Programming, 2013, 141 : 435 - 452
  • [43] Optimality conditions for bilevel optimal control problems with non-convex quasi-variational inequalities
    El Idrissi, Rachid
    Lafhim, Lahoussine
    Kalmoun, El Mostafa
    Ouakrim, Youssef
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (02) : 1789 - 1805
  • [44] STABILITY FOR A CLASS OF NON-CONVEX OPTIMIZATION PROBLEMS
    ZALINESCU, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (12): : 643 - 646
  • [45] AN EFFICIENT METHOD FOR NON-CONVEX QCQP PROBLEMS
    Osmanpour, Naser
    Keyanpour, Mohammad
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (01): : 23 - 45
  • [46] Analysis and computation in non-convex well problems
    Chipot, M
    Kinderlehrer, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 393 - 396
  • [47] THE DUALITY OF CERTAIN NON-CONVEX EXTREMAL PROBLEMS
    SOLOVYEV, VN
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (3-4): : 93 - 96
  • [48] On Graduated Optimization for Stochastic Non-Convex Problems
    Hazan, Elad
    Levy, Kfir Y.
    Shalev-Shwartz, Shai
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [49] EXISTENCE OF SOLUTIONS FOR NON-CONVEX OPTIMIZATION PROBLEMS
    BARANGER, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (04): : 307 - &
  • [50] Collective choice functions on non-convex problems
    Mariotti, M
    ECONOMIC THEORY, 2000, 16 (02) : 457 - 463