Path Cover Problems with Length Cost

被引:0
|
作者
Kenya Kobayashi
Guohui Lin
Eiji Miyano
Toshiki Saitoh
Akira Suzuki
Tadatoshi Utashima
Tsuyoshi Yagita
机构
[1] Kyushu Institute of Technology,
[2] University of Alberta,undefined
[3] Tohoku University,undefined
来源
Algorithmica | 2023年 / 85卷
关键词
Path cover problem; NP-hardness; Treewidth; Approximation algorithm; Planar bipartite graph; Subcubic graph;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document}, a collection P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of vertex-disjoint (simple) paths is called a path cover of G if every vertex v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document} is contained in exactly one path of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document}. The Path Cover problem (PC for short) is to find a minimum cardinality path cover of G. In this paper, we introduce generalizations of PC, where each path is associated with a weight (cost or profit). Our problem, Minimum (Maximum) Weighted Path Cover [MinPC (MaxPC)], is defined as follows: Let U={0,1,⋯,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U=\{0,1,\dots ,n-1\}$$\end{document}. Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and a weight function f:U→R∪{+∞,-∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:U\rightarrow \mathbb {R}\cup \{+\infty , -\infty \}$$\end{document} that defines a weight for each path based on its length, the objective of MinPC (MaxPC) is to find a path cover P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of G such that the total weight of the paths in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} is minimized (maximized). Let L be a subset of U, and PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document} be the set of paths such that each path is of length ℓ∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in L$$\end{document}. We consider MinPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC with binary cost, i.e., the cost function is f(ℓ)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = 1$$\end{document} if ℓ∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in L$$\end{document}; otherwise, f(ℓ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = 0$$\end{document}. We also consider MaxPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC with f(ℓ)=ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = \ell +1$$\end{document}, if ℓ∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in L$$\end{document}; otherwise, f(ℓ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = 0$$\end{document}. Many well-known graph theoretic problems such as the Hamiltonian Path and the Maximum Matching problems can be modeled using MinPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC and MaxPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC. In this paper, we first show that deciding whether MinP{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{0,1,2\}}$$\end{document}PC has a 0-weight solution is NP-complete for planar bipartite graphs of maximum degree three, and consequently, (i) for any constant σ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \ge 1$$\end{document}, there is no polynomial-time approximation algorithm with approximation ratio σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} for MinP{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{0,1,2\}}$$\end{document}PC unless P =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} NP, and (ii) MaxP{3,⋯,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{3,\dots ,n-1\}}$$\end{document}PC is NP-hard for the same graph class. Next, we present a polynomial-time algorithm for MinP{0,1,⋯,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{0,1,\dots ,k\}}$$\end{document}PC on graphs with bounded treewidth for a fixed k. Lastly, we present a 4-approximation algorithm for MaxP{3,⋯,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{3,\dots ,n-1\}}$$\end{document}PC, which becomes a 2.5-approximation algorithm for subcubic graphs.
引用
收藏
页码:3348 / 3375
页数:27
相关论文
共 50 条
  • [31] An asthma care path reduces length and cost of hospitalization for status asthmaticus.
    McDowell, K
    Kercsmar, C
    Chatburn, R
    Myers, T
    JOURNAL OF INVESTIGATIVE MEDICINE, 1996, 44 (03) : A230 - A230
  • [32] Impact of cost distance and habitat fragmentation on the daily path length of Rhinopithecus bieti
    Li, Cong
    Zhao, Xumao
    Li, Dayong
    Garber, Paul Alan
    Xiang, Zuofu
    Li, Ming
    Pan, Huijuan
    PEERJ, 2020, 8
  • [33] Routing and path length algorithm for cost effective modified four tree network
    Aggarwal, H
    Bansal, PK
    2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 293 - 296
  • [34] On Path Cover Problems with Positive and Negative Constraints for Graph-Based Multitarget Tracking
    Chen, Lingji
    Ravichandran, Ravi
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 402 - 408
  • [35] Approximation Algorithms for Min-Max Path Cover Problems with Service Handling Time
    Xu, Zhou
    Xu, Liang
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 383 - 392
  • [36] Better approximability results for min-max tree/cycle/path cover problems
    Yu, Wei
    Liu, Zhaohui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (02) : 563 - 578
  • [37] Robust Shortest Path Problems with Two Uncertain Multiplicative Cost Coefficients
    Kwon, Changhyun
    Lee, Taehan
    Berglund, Paul
    NAVAL RESEARCH LOGISTICS, 2013, 60 (05) : 375 - 394
  • [38] On Star-Cover and Path-Cover of a Tree
    You, Jie
    Feng, Qilong
    Guo, Jiong
    Shi, Feng
    FRONTIERS IN ALGORITHMICS, FAW 2014, 2014, 8497 : 298 - 308
  • [39] Improving load balancing, path length, and stability in low-cost wireless backhauls
    de Mello, Micael O. M. C.
    Borges, Vinicius C. M.
    Pinto, Leizer L.
    Cardoso, Kleber V.
    AD HOC NETWORKS, 2016, 48 : 16 - 28
  • [40] CONVERGENT NETWORK APPROXIMATION FOR THE CONTINUOUS EUCLIDEAN LENGTH CONSTRAINED MINIMUM COST PATH PROBLEM
    Muhandiramge, Ranga
    Boland, Natashia
    Wang, Song
    SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) : 54 - 77