Path Cover Problems with Length Cost

被引:0
|
作者
Kenya Kobayashi
Guohui Lin
Eiji Miyano
Toshiki Saitoh
Akira Suzuki
Tadatoshi Utashima
Tsuyoshi Yagita
机构
[1] Kyushu Institute of Technology,
[2] University of Alberta,undefined
[3] Tohoku University,undefined
来源
Algorithmica | 2023年 / 85卷
关键词
Path cover problem; NP-hardness; Treewidth; Approximation algorithm; Planar bipartite graph; Subcubic graph;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document}, a collection P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of vertex-disjoint (simple) paths is called a path cover of G if every vertex v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document} is contained in exactly one path of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document}. The Path Cover problem (PC for short) is to find a minimum cardinality path cover of G. In this paper, we introduce generalizations of PC, where each path is associated with a weight (cost or profit). Our problem, Minimum (Maximum) Weighted Path Cover [MinPC (MaxPC)], is defined as follows: Let U={0,1,⋯,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U=\{0,1,\dots ,n-1\}$$\end{document}. Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and a weight function f:U→R∪{+∞,-∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:U\rightarrow \mathbb {R}\cup \{+\infty , -\infty \}$$\end{document} that defines a weight for each path based on its length, the objective of MinPC (MaxPC) is to find a path cover P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of G such that the total weight of the paths in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} is minimized (maximized). Let L be a subset of U, and PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document} be the set of paths such that each path is of length ℓ∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in L$$\end{document}. We consider MinPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC with binary cost, i.e., the cost function is f(ℓ)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = 1$$\end{document} if ℓ∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in L$$\end{document}; otherwise, f(ℓ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = 0$$\end{document}. We also consider MaxPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC with f(ℓ)=ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = \ell +1$$\end{document}, if ℓ∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in L$$\end{document}; otherwise, f(ℓ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = 0$$\end{document}. Many well-known graph theoretic problems such as the Hamiltonian Path and the Maximum Matching problems can be modeled using MinPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC and MaxPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC. In this paper, we first show that deciding whether MinP{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{0,1,2\}}$$\end{document}PC has a 0-weight solution is NP-complete for planar bipartite graphs of maximum degree three, and consequently, (i) for any constant σ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \ge 1$$\end{document}, there is no polynomial-time approximation algorithm with approximation ratio σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} for MinP{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{0,1,2\}}$$\end{document}PC unless P =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} NP, and (ii) MaxP{3,⋯,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{3,\dots ,n-1\}}$$\end{document}PC is NP-hard for the same graph class. Next, we present a polynomial-time algorithm for MinP{0,1,⋯,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{0,1,\dots ,k\}}$$\end{document}PC on graphs with bounded treewidth for a fixed k. Lastly, we present a 4-approximation algorithm for MaxP{3,⋯,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{3,\dots ,n-1\}}$$\end{document}PC, which becomes a 2.5-approximation algorithm for subcubic graphs.
引用
收藏
页码:3348 / 3375
页数:27
相关论文
共 50 条
  • [21] Extremal Cover Cost and Reverse Cover Cost of Trees
    Huang, Jing
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2021, 86 (02) : 343 - 362
  • [22] On the complexity of vertex-disjoint length-restricted path problems
    Bley, A
    COMPUTATIONAL COMPLEXITY, 2003, 12 (3-4) : 131 - 149
  • [23] EVACUATION PLANNING PROBLEMS ON UNIFORM PATH LENGTH NETWORK WITH PRIORITIZED DESTINATIONS
    Bhandari, P. P.
    Khadka, S. R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 363 - 376
  • [24] On the computational complexity of length- and neighborhood-constrained path problems
    Luckow, Max-Jonathan
    Fluschnik, Till
    INFORMATION PROCESSING LETTERS, 2020, 156
  • [25] On the complexity of vertex-disjoint length-restricted path problems
    Andreas Bley
    computational complexity, 2003, 12 : 131 - 149
  • [26] Congestion Minimization for Service Chain Routing Problems With Path Length Considerations
    Gao, Lingnan
    Rouskas, George N.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2020, 28 (06) : 2643 - 2656
  • [27] Solving Problems with Unknown Solution Length at Almost No Extra Cost
    Benjamin Doerr
    Carola Doerr
    Timo Kötzing
    Algorithmica, 2019, 81 : 703 - 748
  • [28] Solving Problems with Unknown Solution Length at Almost No Extra Cost
    Doerr, Benjamin
    Doerr, Carola
    Koetzing, Timo
    ALGORITHMICA, 2019, 81 (02) : 703 - 748
  • [29] Solving Problems with Unknown Solution Length at (Almost) No Extra Cost
    Doerr, Benjamin
    Doerr, Carola
    Koetzing, Timo
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 831 - 838
  • [30] Path point cover
    Sundaram, S. Soma
    Nagarajan, A.
    Krishnan, M. Anantha
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2006, 9 (01): : 67 - 71