Path Cover Problems with Length Cost

被引:0
|
作者
Kenya Kobayashi
Guohui Lin
Eiji Miyano
Toshiki Saitoh
Akira Suzuki
Tadatoshi Utashima
Tsuyoshi Yagita
机构
[1] Kyushu Institute of Technology,
[2] University of Alberta,undefined
[3] Tohoku University,undefined
来源
Algorithmica | 2023年 / 85卷
关键词
Path cover problem; NP-hardness; Treewidth; Approximation algorithm; Planar bipartite graph; Subcubic graph;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document}, a collection P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of vertex-disjoint (simple) paths is called a path cover of G if every vertex v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document} is contained in exactly one path of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document}. The Path Cover problem (PC for short) is to find a minimum cardinality path cover of G. In this paper, we introduce generalizations of PC, where each path is associated with a weight (cost or profit). Our problem, Minimum (Maximum) Weighted Path Cover [MinPC (MaxPC)], is defined as follows: Let U={0,1,⋯,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U=\{0,1,\dots ,n-1\}$$\end{document}. Given a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=(V,E)$$\end{document} and a weight function f:U→R∪{+∞,-∞}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:U\rightarrow \mathbb {R}\cup \{+\infty , -\infty \}$$\end{document} that defines a weight for each path based on its length, the objective of MinPC (MaxPC) is to find a path cover P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} of G such that the total weight of the paths in P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}$$\end{document} is minimized (maximized). Let L be a subset of U, and PL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document} be the set of paths such that each path is of length ℓ∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in L$$\end{document}. We consider MinPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC with binary cost, i.e., the cost function is f(ℓ)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = 1$$\end{document} if ℓ∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in L$$\end{document}; otherwise, f(ℓ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = 0$$\end{document}. We also consider MaxPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC with f(ℓ)=ℓ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = \ell +1$$\end{document}, if ℓ∈L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in L$$\end{document}; otherwise, f(ℓ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\ell ) = 0$$\end{document}. Many well-known graph theoretic problems such as the Hamiltonian Path and the Maximum Matching problems can be modeled using MinPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC and MaxPL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{L}$$\end{document}PC. In this paper, we first show that deciding whether MinP{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{0,1,2\}}$$\end{document}PC has a 0-weight solution is NP-complete for planar bipartite graphs of maximum degree three, and consequently, (i) for any constant σ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma \ge 1$$\end{document}, there is no polynomial-time approximation algorithm with approximation ratio σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} for MinP{0,1,2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{0,1,2\}}$$\end{document}PC unless P =\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$=$$\end{document} NP, and (ii) MaxP{3,⋯,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{3,\dots ,n-1\}}$$\end{document}PC is NP-hard for the same graph class. Next, we present a polynomial-time algorithm for MinP{0,1,⋯,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{0,1,\dots ,k\}}$$\end{document}PC on graphs with bounded treewidth for a fixed k. Lastly, we present a 4-approximation algorithm for MaxP{3,⋯,n-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^{\{3,\dots ,n-1\}}$$\end{document}PC, which becomes a 2.5-approximation algorithm for subcubic graphs.
引用
收藏
页码:3348 / 3375
页数:27
相关论文
共 50 条
  • [1] Path Cover Problems with Length Cost
    Kobayashi, Kenya
    Lin, Guohui
    Miyano, Eiji
    Saitoh, Toshiki
    Suzuki, Akira
    Utashima, Tadatoshi
    Yagita, Tsuyoshi
    ALGORITHMICA, 2023, 85 (11) : 3348 - 3375
  • [2] ON THE COMPUTATIONAL-COMPLEXITY OF PATH COVER PROBLEMS
    NTAFOS, S
    GONZALEZ, T
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1984, 29 (02) : 225 - 242
  • [3] Minimum cost path problems with relays
    Laporte, Gilbert
    Pascoal, Marta M. B.
    COMPUTERS & OPERATIONS RESEARCH, 2011, 38 (01) : 165 - 173
  • [4] Extremal problems on k-ary trees with respect to the cover cost and reverse cover cost
    Li, Shuchao
    Wang, Shujing
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [5] PATH COVER PROBLEMS IN DIGRAPHS AND APPLICATIONS TO PROGRAM TESTING
    NTAFOS, SC
    HAKIMI, SL
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1979, 5 (05) : 520 - 529
  • [6] Certifying Algorithms for the Path Cover and Related Problems on Interval Graphs
    Hung, Ruo-Wei
    Chang, Maw-Shang
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2010, PT 2, PROCEEDINGS, 2010, 6017 : 314 - +
  • [7] ON THE COMPLEXITY OF FLOW PROBLEMS WITH PATH-LENGTH CONSTRAINTS
    KUZMIN, SL
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1985, 23 (06): : 57 - 64
  • [8] Least-cost path length versus accumulated-cost as connectivity measures
    Etherington, Thomas R.
    Holland, E. Penelope
    LANDSCAPE ECOLOGY, 2013, 28 (07) : 1223 - 1229
  • [9] EFFICIENT ALGORITHMS FOR PATH PROBLEMS WITH GENERAL COST CRITERIA
    LENGAUER, T
    THEUNE, D
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 314 - 326
  • [10] Least-cost path length versus accumulated-cost as connectivity measures
    Thomas R. Etherington
    E. Penelope Holland
    Landscape Ecology, 2013, 28 : 1223 - 1229