The Classical R-Matrix of AdS/CFT and its Lie Dialgebra Structure

被引:0
|
作者
Benoît Vicedo
机构
[1] École Normale Supérieure,Laboratoire de Physique Théorique
[2] Institut de Physique Théorique,undefined
[3] C.E.A.-Saclay,undefined
来源
关键词
37K10; 17B80; classical integrable systems; -matrix formalism; constrained Hamiltonian systems;
D O I
暂无
中图分类号
学科分类号
摘要
The classical integrable structure of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_4}$$\end{document}-graded supercoset σ-models, arising in the AdS/CFT correspondence, is formulated within the R-matrix approach. The central object in this construction is the standard R-matrix of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_4}$$\end{document}-twisted loop algebra. However, in order to correctly describe the Lax matrix within this formalism, the standard inner product on this twisted loop algebra requires a further twist induced by the Zhukovsky map, which also plays a key role in the AdS/CFT correspondence. The non-ultralocality of the σ-model can be understood as stemming from this latter twist since it leads to a non-skew-symmetric R-matrix.
引用
收藏
页码:249 / 274
页数:25
相关论文
共 50 条