The classical r-matrix method and superintegrable systems

被引:1
|
作者
Tsyganov, AV [1 ]
机构
[1] St Petersburg State Univ, Phys Res Inst, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1007/BF02583046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superintegrable or degenerate systems are considered in the framework of the classical r-matrix method. We propose a scheme for constructing superintegrable Hamiltonians of the natural form with polynomial coefficients by using outer automorphisms of the loop algebra. This scheme allows one to derive new degenerate systems from geodesic hows on constant-curvature Riemannian spaces.
引用
收藏
页码:1140 / 1156
页数:17
相关论文
共 50 条
  • [1] Superintegrable systems in the classical r-matrix method
    Tsiganov, AV
    PHYSICS OF ATOMIC NUCLEI, 1998, 61 (10) : 1797 - 1802
  • [2] LINEAR R-MATRIX ALGEBRA FOR CLASSICAL SEPARABLE SYSTEMS
    EILBECK, JC
    ENOLSKII, VZ
    KUZNETSOV, VB
    TSIGANOV, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02): : 567 - 578
  • [3] WHAT IS A CLASSICAL R-MATRIX
    SEMENOVTYANSHANSKII, MA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1983, 17 (04) : 259 - 272
  • [4] Applications of the R-Matrix Method in Integrable Systems
    Feng, Binlu
    Zhang, Yufeng
    Zhang, Hongyi
    SYMMETRY-BASEL, 2023, 15 (09):
  • [5] What a Classical r-Matrix Really Is
    Boris A. Kupershmidt
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 448 - 488
  • [6] The classical r-matrix in a geometric framework
    Department of Physics, Stockholm University, Box 6730, 113 85 Stockholm, Sweden
    Phys Lett Sect A Gen At Solid State Phys, 4-6 (243-248):
  • [7] The classical r-matrix in a geometric framework
    Rosquist, K
    PHYSICS LETTERS A, 1999, 255 (4-6) : 243 - 248
  • [8] What a classical r-matrix really is
    Kupershmidt, BA
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1999, 6 (04) : 448 - 488
  • [9] Canonical and Backlund transformations for discrete integrable systems and classical r-matrix
    Choudhury, AG
    Chowdhury, AR
    PHYSICS LETTERS A, 2001, 280 (1-2) : 37 - 44
  • [10] Classical R-matrix theory for bi-Hamiltonian field systems
    Blaszak, Maciej
    Szablikowski, Blazej M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (40)