Improving kernel online learning with a snapshot memory

被引:0
|
作者
Trung Le
Khanh Nguyen
Dinh Phung
机构
[1] Department of Data Science and AI,
[2] Monash University,undefined
[3] VinAI Research,undefined
来源
Machine Learning | 2022年 / 111卷
关键词
Kernel online learning; Incremental stochastic gradient descent; Online learning; Kernel methods; Stochastic optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We propose in this paper the Stochastic Variance-reduced Gradient Descent for Kernel Online Learning (DualSVRG), which obtains the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-approximate linear convergence rate and is not vulnerable to the curse of kernelization. Our approach uses a variance reduction technique to reduce the variance when estimating full gradient, and further exploits recent work in dual space gradient descent for online learning to achieve model optimality. This is achieved by introducing the concept of an instant memory, which is a snapshot storing the most recent incoming data instances and proposing three transformer oracles, namely budget, coverage, and always-move oracles. We further develop rigorous theoretical analysis to demonstrate that our proposed approach can obtain the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-approximate linear convergence rate, while maintaining model sparsity, hence encourages fast training. We conduct extensive experiments on several benchmark datasets to compare our DualSVRG with state-of-the-art baselines in both batch and online settings. The experimental results show that our DualSVRG yields superior predictive performance, while spending comparable training time with baselines.
引用
收藏
页码:997 / 1018
页数:21
相关论文
共 50 条
  • [31] Incremental kernel PCA for online learning of feature space
    Kimura, Shosuke
    Wawa, Seiichi
    Abe, Shigeo
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 1, PROCEEDINGS, 2006, : 595 - +
  • [32] Kernel based online learning for imbalance multiclass classification
    Ding, Shuya
    Mirza, Bilal
    Lin, Zhiping
    Cao, Jiuwen
    Lai, Xiaoping
    Nguyen, Tam V.
    Sepulveda, Jose
    NEUROCOMPUTING, 2018, 277 : 139 - 148
  • [33] An Information Theoretic Kernel Algorithm for Robust Online Learning
    Fan, Haijin
    Song, Qing
    Xu, Zhao
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [34] An information theoretic sparse kernel algorithm for online learning
    Fan, Haijin
    Song, Qing
    Xu, Zhao
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (09) : 4349 - 4359
  • [35] Robust large-scale online kernel learning
    Chen, Lei
    Zhang, Jiaming
    Ning, Hanwen
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (17): : 15053 - 15073
  • [36] Online Multiple Kernel Learning: Algorithms and Mistake Bounds
    Jin, Rong
    Hoi, Steven C. H.
    Yang, Tianbao
    ALGORITHMIC LEARNING THEORY, ALT 2010, 2010, 6331 : 390 - 404
  • [37] Gossiped and Quantized Online Multi-Kernel Learning
    Ortega, Tomas
    Jafarkhani, Hamid
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 468 - 472
  • [38] Online kernel learning with nearly constant support vectors
    Lin, Ming
    Zhang, Lijun
    Jin, Rong
    Weng, Shifeng
    Zhang, Changshui
    NEUROCOMPUTING, 2016, 179 : 26 - 36
  • [39] Online Multiple Kernel Similarity Learning for Visual Search
    Xia, Hao
    Hoi, Steven C. H.
    Jin, Rong
    Zhao, Peilin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (03) : 536 - 549
  • [40] Online sequential reduced kernel extreme learning machine
    Deng, Wan-Yu
    Ong, Yew-Soon
    Tan, Puay Siew
    Zheng, Qing-Hua
    NEUROCOMPUTING, 2016, 174 : 72 - 84