Improving kernel online learning with a snapshot memory

被引:0
|
作者
Trung Le
Khanh Nguyen
Dinh Phung
机构
[1] Department of Data Science and AI,
[2] Monash University,undefined
[3] VinAI Research,undefined
来源
Machine Learning | 2022年 / 111卷
关键词
Kernel online learning; Incremental stochastic gradient descent; Online learning; Kernel methods; Stochastic optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We propose in this paper the Stochastic Variance-reduced Gradient Descent for Kernel Online Learning (DualSVRG), which obtains the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-approximate linear convergence rate and is not vulnerable to the curse of kernelization. Our approach uses a variance reduction technique to reduce the variance when estimating full gradient, and further exploits recent work in dual space gradient descent for online learning to achieve model optimality. This is achieved by introducing the concept of an instant memory, which is a snapshot storing the most recent incoming data instances and proposing three transformer oracles, namely budget, coverage, and always-move oracles. We further develop rigorous theoretical analysis to demonstrate that our proposed approach can obtain the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-approximate linear convergence rate, while maintaining model sparsity, hence encourages fast training. We conduct extensive experiments on several benchmark datasets to compare our DualSVRG with state-of-the-art baselines in both batch and online settings. The experimental results show that our DualSVRG yields superior predictive performance, while spending comparable training time with baselines.
引用
收藏
页码:997 / 1018
页数:21
相关论文
共 50 条
  • [21] Bounded Kernel-Based Online Learning
    Orabona, Francesco
    Keshet, Joseph
    Caputo, Barbara
    JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 2643 - 2666
  • [22] Bounded kernel-based online learning
    Orabona, Francesco
    Keshet, Joseph
    Caputo, Barbara
    Journal of Machine Learning Research, 2009, 10 : 2643 - 2666
  • [23] Kernel Online Learning Algorithm With Scale Adaptation
    Wang, Shiyuan
    Dang, Lujuan
    Chen, Badong
    Ling, Chengxiu
    Wang, Lidan
    Duan, Shukai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (11) : 1788 - 1792
  • [24] Kernel Online Multi-task Learning
    Sumitra, S.
    Aravindh, A.
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS, ICC3 2015, 2016, 412 : 55 - 64
  • [25] Kernel online learning algorithm with state feedbacks
    Fan, Haijin
    Song, Qing
    Yang, Xulei
    Xu, Zhao
    KNOWLEDGE-BASED SYSTEMS, 2015, 89 : 173 - 180
  • [26] Online Kernel-Based Mode Learning
    Wang, Tao
    Yao, Weixin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025,
  • [27] Improving Communication in Online Learning Systems
    Mayende, Godfrey
    Prinz, Andreas
    Isabwe, Ghislain Maurice N.
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION (CSEDU), VOL 1, 2017, : 300 - 307
  • [28] Robust large-scale online kernel learning
    Lei Chen
    Jiaming Zhang
    Hanwen Ning
    Neural Computing and Applications, 2022, 34 : 15053 - 15073
  • [29] Multi Kernel Learning with Online-Batch Optimization
    Orabona, Francesco
    Jie, Luo
    Caputo, Barbara
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 227 - 253
  • [30] Illustration and digital snapshot assignments enhance learning from online lectures
    Michaels, Thomas
    HORTSCIENCE, 2008, 43 (04) : 1116 - 1116