Improving kernel online learning with a snapshot memory

被引:0
|
作者
Trung Le
Khanh Nguyen
Dinh Phung
机构
[1] Department of Data Science and AI,
[2] Monash University,undefined
[3] VinAI Research,undefined
来源
Machine Learning | 2022年 / 111卷
关键词
Kernel online learning; Incremental stochastic gradient descent; Online learning; Kernel methods; Stochastic optimization;
D O I
暂无
中图分类号
学科分类号
摘要
We propose in this paper the Stochastic Variance-reduced Gradient Descent for Kernel Online Learning (DualSVRG), which obtains the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-approximate linear convergence rate and is not vulnerable to the curse of kernelization. Our approach uses a variance reduction technique to reduce the variance when estimating full gradient, and further exploits recent work in dual space gradient descent for online learning to achieve model optimality. This is achieved by introducing the concept of an instant memory, which is a snapshot storing the most recent incoming data instances and proposing three transformer oracles, namely budget, coverage, and always-move oracles. We further develop rigorous theoretical analysis to demonstrate that our proposed approach can obtain the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon$$\end{document}-approximate linear convergence rate, while maintaining model sparsity, hence encourages fast training. We conduct extensive experiments on several benchmark datasets to compare our DualSVRG with state-of-the-art baselines in both batch and online settings. The experimental results show that our DualSVRG yields superior predictive performance, while spending comparable training time with baselines.
引用
收藏
页码:997 / 1018
页数:21
相关论文
共 50 条
  • [1] Improving kernel online learning with a snapshot memory
    Trung Le
    Khanh Nguyen
    Dinh Phung
    MACHINE LEARNING, 2022, 111 (03) : 997 - 1018
  • [2] A survey on online kernel selection for online kernel learning
    Zhang, Xiao
    Liao, Yun
    Liao, Shizhong
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 9 (02)
  • [3] Kernel online learning with adaptive kernel width
    Fan, Haijin
    Song, Qing
    Shrestha, Sumit B.
    NEUROCOMPUTING, 2016, 175 : 233 - 242
  • [4] Online Kernel Dictionary Learning
    Kim, Seung-Jun
    2015 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2015, : 103 - 107
  • [5] Online learning with kernel losses
    Pacchiano, Aldo
    Chatterji, Niladri S.
    Bartlett, Peter L.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [6] Online Unsupervised Kernel Learning Algorithms
    Kuh, Anthony
    Uddin, Muhammad Sharif
    Ng, Phyllis
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 1019 - 1025
  • [7] Online Kernel Dictionary Learning on a Budget
    Lee, Jeon
    Kim, Seung-Jun
    2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 1535 - 1539
  • [8] Robust Recurrent Kernel Online Learning
    Song, Qing
    Zhao, Xu
    Fan, Haijin
    Wang, Danwei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (05) : 1068 - 1081
  • [9] Large Scale Online Kernel Learning
    Lu, Jing
    Hoi, Steven C. H.
    Wang, Jialei
    Zhao, Peilin
    Liu, Zhi-Yong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [10] Quantized Distributed Online Kernel Learning
    Park, Jonghwan
    Hong, Songnam
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 357 - 361