Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations

被引:0
|
作者
Andrea Sacchetti
机构
[1] University of Modena e Reggio Emilia,Department of Physics, Informatics and Mathematics
来源
Annales Henri Poincaré | 2020年 / 21卷
关键词
35Q55; 81Qxx; 81T25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the nonlinear one-dimensional time-dependent Schrödinger equation with a periodic potential and a bounded perturbation. In the limit of large periodic potential, the time behavior of the wavefunction can be approximated, with a precise estimate of the remainder term, by means of the solution to the discrete nonlinear Schrödinger equation of the tight-binding model.
引用
收藏
页码:627 / 648
页数:21
相关论文
共 50 条
  • [21] Non-conservative variational approximation for nonlinear Schrödinger equations
    J. Rossi
    R. Carretero-González
    P. G. Kevrekidis
    [J]. The European Physical Journal Plus, 135
  • [22] TIME-DEPENDENT RESONANT TUNNELING OF WAVE-PACKETS IN THE TIGHT-BINDING MODEL
    STOVNENG, JA
    HAUGE, EH
    [J]. PHYSICAL REVIEW B, 1991, 44 (24) : 13582 - 13594
  • [23] Tight-binding approach to time-dependent density-functional response theory
    Niehaus, TA
    Suhai, S
    Della Sala, F
    Lugli, P
    Elstner, M
    Seifert, G
    Frauenheim, T
    [J]. PHYSICAL REVIEW B, 2001, 63 (08)
  • [24] Tight-Binding Approximation on the Lemniscate
    V. L. Oleinik
    [J]. Journal of Mathematical Sciences, 2003, 115 (2) : 2233 - 2242
  • [25] SUPERCONDUCTIVITY IN TIGHT-BINDING APPROXIMATION
    POON, SJ
    [J]. SOLID STATE COMMUNICATIONS, 1976, 18 (11-1) : 1489 - 1491
  • [26] THE DISCRETE TIGHT-BINDING APPROXIMATION
    MIRONOV, AL
    OLEINIK, VL
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 75 (1-2) : 317 - 335
  • [27] The derivation of time-dependent Schrodinger equations
    Briggs, John S.
    Boonchui, Sutee
    Khemmani, Supitch
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (06) : 1289 - 1302
  • [28] B-spline with symplectic algorithm method for solution of time-dependent schrödinger equations
    State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
    不详
    不详
    [J]. Chin. Phys. Lett., 2006, 9 (2403-2406):
  • [29] Exponential fitting method for the time-dependent Schrödinger equation
    M. Rizea
    [J]. Journal of Mathematical Chemistry, 2010, 48 : 55 - 65
  • [30] Schrödinger and Dirac dynamics on time-dependent quantum graph
    D S Nikiforov
    I V Blinova
    I Y Popov
    [J]. Indian Journal of Physics, 2019, 93 : 913 - 920