Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations

被引:0
|
作者
Andrea Sacchetti
机构
[1] University of Modena e Reggio Emilia,Department of Physics, Informatics and Mathematics
来源
Annales Henri Poincaré | 2020年 / 21卷
关键词
35Q55; 81Qxx; 81T25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the nonlinear one-dimensional time-dependent Schrödinger equation with a periodic potential and a bounded perturbation. In the limit of large periodic potential, the time behavior of the wavefunction can be approximated, with a precise estimate of the remainder term, by means of the solution to the discrete nonlinear Schrödinger equation of the tight-binding model.
引用
收藏
页码:627 / 648
页数:21
相关论文
共 50 条
  • [11] Numerical Approximation of Solution for the Coupled Nonlinear Schr?dinger Equations
    Juan CHEN
    Lu-ming ZHANG
    [J]. Acta Mathematicae Applicatae Sinica, 2017, 33 (02) : 435 - 450
  • [12] Numerical approximation of solution for the coupled nonlinear Schrödinger equations
    Juan Chen
    Lu-ming Zhang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 435 - 450
  • [13] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    [J]. International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [14] Nonlinear time-dependent Schrödinger equations: the Gross-Pitaevskii equation with double-well potential
    Andrea Sacchetti
    [J]. Journal of Evolution Equations, 2004, 4 : 345 - 369
  • [15] Extensions of the Time-Dependent Density Functional Based Tight-Binding Approach
    Dominguez, A.
    Aradi, B.
    Frauenheim, T.
    Lutsker, V.
    Niehaus, T. A.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (11) : 4901 - 4914
  • [16] HARTREE-FOCK EQUATIONS IN TIGHT-BINDING APPROXIMATION
    DAUMER, F
    [J]. HELVETICA PHYSICA ACTA, 1994, 67 (03): : 237 - 256
  • [17] Solution to the Schrödinger Equation for the Time-Dependent Potential
    Chao-Yun Long
    Shui-Jie Qin
    Zhu-Hua Yang
    Guang-Jie Guo
    [J]. International Journal of Theoretical Physics, 2009, 48 : 981 - 985
  • [18] Universal time-dependent deformations of Schrödinger geometry
    Yu Nakayama
    [J]. Journal of High Energy Physics, 2010
  • [19] Time-dependent tight binding
    Todorov, TN
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (45) : 10125 - 10148
  • [20] The optical structures for the fractional chiral nonlinear Schrödinger equation with time-dependent coefficients
    Mohammed, Wael W.
    Iqbal, Naveed
    Bourazza, S.
    Elsayed, Elsayed M.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (09)