Smoothness on bubble tree compactified instanton moduli spaces

被引:0
|
作者
Bohui Chen
机构
[1] Sichuan University,Department of Mathematics and Yangtze Mathematical Center
关键词
instanton; bubble tree compactification; smoothness; 53C05;
D O I
暂无
中图分类号
学科分类号
摘要
The bubble tree compactified instanton moduli space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar M_\kappa $$\end{document}(X) is introduced. Its singularity set Singκ(X) is described. By the standard gluing theory, one can show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bar M_\kappa $$\end{document}(X) — Singκ(X) is a topological orbifold. In this paper, we give an argument to construct smooth structures on it.
引用
收藏
页码:209 / 240
页数:31
相关论文
共 50 条
  • [21] Generalized Kähler Geometry of Instanton Moduli Spaces
    Henrique Bursztyn
    Gil R. Cavalcanti
    Marco Gualtieri
    [J]. Communications in Mathematical Physics, 2015, 333 : 831 - 860
  • [22] Induced three-forms on instanton moduli spaces
    Ferreira, Ana Cristina
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (09)
  • [23] Inequalities for moduli of smoothness versus embeddings of function spaces
    Trebels, Walter
    [J]. ARCHIV DER MATHEMATIK, 2010, 94 (02) : 155 - 164
  • [24] Inequalities for moduli of smoothness versus embeddings of function spaces
    Walter Trebels
    [J]. Archiv der Mathematik, 2010, 94 : 155 - 164
  • [25] CYCLIC OPERAD FORMALITY FOR COMPACTIFIED MODULI SPACES OF GENUS ZERO SURFACES
    Giansiracusa, Jeffrey
    Salvatore, Paolo
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (11) : 5881 - 5911
  • [26] 3D Mirror Symmetry for Instanton Moduli Spaces
    Peter Koroteev
    Anton M. Zeitlin
    [J]. Communications in Mathematical Physics, 2023, 403 : 1005 - 1068
  • [27] MODULI SPACES OF RANK 2 INSTANTON SHEAVES ON THE PROJECTIVE SPACE
    Jardim, Marcos
    Maican, Mario
    Tikhomirov, Alexander S.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (02) : 399 - 424
  • [28] 3D Mirror Symmetry for Instanton Moduli Spaces
    Koroteev, Peter
    Zeitlin, Anton M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 403 (02) : 1005 - 1068
  • [29] Instanton Moduli Spaces and Bases in Coset Conformal Field Theory
    A. A. Belavin
    M. A. Bershtein
    B. L. Feigin
    A. V. Litvinov
    G. M. Tarnopolsky
    [J]. Communications in Mathematical Physics, 2013, 319 : 269 - 301
  • [30] Instanton Moduli Spaces and Bases in Coset Conformal Field Theory
    Belavin, A. A.
    Bershtein, M. A.
    Feigin, B. L.
    Litvinov, A. V.
    Tarnopolsky, G. M.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 319 (01) : 269 - 301