Inequalities for moduli of smoothness versus embeddings of function spaces

被引:0
|
作者
Walter Trebels
机构
[1] Technische Universität Darmstadt,Fachbereich Mathematik
来源
Archiv der Mathematik | 2010年 / 94卷
关键词
Primary 46E35; 46B70; Secondary 26B05; 46E30; Marchaud; Ulyanov; Kolyada inequalities; Besov and Sobolevspaces; -functional; Holmstedt’s formula;
D O I
暂无
中图分类号
学科分类号
摘要
The so-called sharp Marchaud inequality and some converse of it, as well as the Ulyanov and Kolyada inequalities are equivalent to some embeddings between Besov and potential spaces. Peetre’s (modified) K-functional, its characterization via moduli of smoothness (also of fractional order), and limit cases of the Holmstedt formula are essentially used.
引用
收藏
页码:155 / 164
页数:9
相关论文
共 50 条
  • [1] Inequalities for moduli of smoothness versus embeddings of function spaces
    Trebels, Walter
    [J]. ARCHIV DER MATHEMATIK, 2010, 94 (02) : 155 - 164
  • [2] Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations
    Dom'inguez, Oscar
    Tikhonov, Sergey
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 282 (1393) : 1 - 166
  • [3] Inequalities for moduli of smoothness on two-point homogeneous spaces
    Carrijo, A. O.
    Jordao, T.
    Santos, C.
    [J]. POSITIVITY, 2022, 26 (03)
  • [4] Inequalities for moduli of smoothness on two-point homogeneous spaces
    A. O. Carrijo
    T. Jordão
    C. Santos
    [J]. Positivity, 2022, 26
  • [5] Nuclear and Compact Embeddings in Function Spaces of Generalised Smoothness
    D. D. Haroske
    H.-G. Leopold
    S. D. Moura
    L. Skrzypczak
    [J]. Analysis Mathematica, 2023, 49 : 1007 - 1039
  • [6] Nuclear and Compact Embeddings in Function Spaces of Generalised Smoothness
    Haroske, D. D.
    Leopold, H. -G.
    Moura, S. D.
    Skrzypczak, L.
    [J]. ANALYSIS MATHEMATICA, 2023, 49 (04) : 1007 - 1039
  • [7] Ostrowski Inequalities and Moduli of Smoothness
    Acu, Ana Maria
    Gonska, Heiner
    [J]. RESULTS IN MATHEMATICS, 2009, 53 (3-4) : 217 - 228
  • [8] Ostrowski Inequalities and Moduli of Smoothness
    Ana Maria Acu
    Heiner Gonska
    [J]. Results in Mathematics, 2009, 53 : 217 - 228
  • [9] Embeddings of smooth function spaces, extrapolations, and related inequalities
    Domínguez, Óscar
    Tikhonov, Sergey
    [J]. arXiv, 2019,
  • [10] Embeddings of Besov spaces of logarithmic smoothness
    Cobos, Fernando
    Dominguez, Oscar
    [J]. STUDIA MATHEMATICA, 2014, 223 (03) : 193 - 204