Ostrowski Inequalities and Moduli of Smoothness

被引:4
|
作者
Acu, Ana Maria [1 ]
Gonska, Heiner [2 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math, RO-550012 Sibiu, Romania
[2] Univ Duisburg Essen, Dept Math, D-47048 Duisburg, Germany
关键词
Quadrature rule; Ostrowski inequality; moduli of smoothness;
D O I
10.1007/s00025-008-0332-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ostrowski's classical inequality and modifications thereof are generalized using the least concave majorant of the modulus of continuity and the second order modulus of smoothness.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 50 条
  • [1] Ostrowski Inequalities and Moduli of Smoothness
    Ana Maria Acu
    Heiner Gonska
    Results in Mathematics, 2009, 53 : 217 - 228
  • [2] Ul'yanov Type Inequalities For Moduli Of Smoothness
    Jafarov, Sadulla
    APPLIED MATHEMATICS E-NOTES, 2012, 12 : 221 - 227
  • [3] Weak Type Inequalities for Moduli of Smoothness on Unit Sphere
    王晟
    数学进展, 2010, 39 (02) : 254 - 255
  • [4] Inequalities for moduli of smoothness of functions and their Liouville–Weyl derivatives
    A. Jumabayeva
    B. Simonov
    Acta Mathematica Hungarica, 2018, 156 : 1 - 17
  • [5] Inequalities for moduli of smoothness versus embeddings of function spaces
    Trebels, Walter
    ARCHIV DER MATHEMATIK, 2010, 94 (02) : 155 - 164
  • [6] Inequalities for moduli of smoothness versus embeddings of function spaces
    Walter Trebels
    Archiv der Mathematik, 2010, 94 : 155 - 164
  • [7] Ulyanov inequalities for the mixed moduli of smoothness in mixed metrics
    Simonov, Boris V.
    Jumabayeva, Ainur A.
    GEORGIAN MATHEMATICAL JOURNAL, 2025, 32 (01) : 149 - 161
  • [8] Inequalities for moduli of smoothness on two-point homogeneous spaces
    Carrijo, A. O.
    Jordao, T.
    Santos, C.
    POSITIVITY, 2022, 26 (03)
  • [9] Inequalities for moduli of smoothness of functions and their Liouville-Weyl derivatives
    Jumabayeva, A.
    Simonov, B.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 1 - 17
  • [10] A unified approach to inequalities for K-functionals and moduli of smoothness
    Gogatishvili, Amiran
    Opic, Bohumir
    Tikhonov, Sergey
    Trebels, Walter
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (02)