Ostrowski Inequalities and Moduli of Smoothness

被引:4
|
作者
Acu, Ana Maria [1 ]
Gonska, Heiner [2 ]
机构
[1] Lucian Blaga Univ Sibiu, Dept Math, RO-550012 Sibiu, Romania
[2] Univ Duisburg Essen, Dept Math, D-47048 Duisburg, Germany
关键词
Quadrature rule; Ostrowski inequality; moduli of smoothness;
D O I
10.1007/s00025-008-0332-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Ostrowski's classical inequality and modifications thereof are generalized using the least concave majorant of the modulus of continuity and the second order modulus of smoothness.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 50 条
  • [31] Multivariate Ostrowski Type Inequalities
    G.A. Anastassiou
    Acta Mathematica Hungarica, 1997, 76 : 267 - 278
  • [32] ON NEW OSTROWSKI TYPE INEQUALITIES
    Liu, Wenjun
    Dong, Jianwei
    DEMONSTRATIO MATHEMATICA, 2008, 41 (02) : 317 - 322
  • [33] Some Ostrowski type inequalities
    Liu, Zheng
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (5-6) : 949 - 960
  • [34] ON MODULI OF SMOOTHNESS IN ORLICZ CLASSES
    Jafarov, Sadulla Z.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2010, 33 (41): : 95 - 100
  • [35] ON THE RELATIVE BEHAVIOR OF MODULI OF SMOOTHNESS
    ZHOU, SP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1991, 43 (03) : 475 - 482
  • [36] Multidimensional Ostrowski inequalities, revisited
    George A. Anastassiou
    Acta Mathematica Hungarica, 2002, 97 : 339 - 353
  • [37] On the Moduli of Smoothness with Jacobi Weights
    K. A. Kopotun
    D. Leviatan
    I. A. Shevchuk
    Ukrainian Mathematical Journal, 2018, 70 : 437 - 466
  • [38] ORDER MODULI OF CONVEXITY AND SMOOTHNESS
    MALEEV, RP
    TROYANSKI, SL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1983, 17 (03) : 231 - 233
  • [39] On the Moduli of Smoothness with Jacobi Weights
    Kopotun, K. A.
    Leviatan, D.
    Shevchuk, I. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (03) : 437 - 466
  • [40] Moduli of smoothness of functions and their derivatives
    Ditzian, Z.
    Tikhonov, S.
    STUDIA MATHEMATICA, 2007, 180 (02) : 143 - 160