Analyzing the potential of full duplex in 5G ultra-dense small cell networks

被引:0
|
作者
Marta Gatnau Sarret
Gilberto Berardinelli
Nurul H. Mahmood
Marko Fleischer
Preben Mogensen
Helmut Heinz
机构
[1] Aalborg University,Department of Electronics Systems
[2] Nokia Solutions and Networks,undefined
[3] Nokia Bell Labs,undefined
关键词
Full duplex; 5G; Small cell; Throughput; Delay; Interference; Traffic profile;
D O I
暂无
中图分类号
学科分类号
摘要
Full-duplex technology has become an attractive solution for future 5th generation (5G) systems for accommodating the exponentially growing mobile traffic demand. Full duplex allows a node to transmit and receive simultaneously in the same frequency band, thus, theoretically, doubling the system throughput over conventional half-duplex systems. A key limitation in building a feasible full-duplex node is the self-interference, i.e., the interference generated by the transmitted signal to the desired signal received on the same node. This constraint has been overcome given the recent advances in the self-interference cancellation technology. However, there are other limitations in achieving the theoretical full-duplex gain: residual self-interference, traffic constraints, and inter-cell and intra-cell interference. The contribution of this article is twofold. Firstly, achievable levels of self-interference cancellation are demonstrated using our own developed test bed. Secondly, a detailed evaluation of full-duplex communication in 5G ultra-dense small cell networks via system level simulations is provided. The results are presented in terms of throughput and delay. Two types of full duplex are studied: when both the station and the user equipments are full duplex capable and when only the base station is able to exploit simultaneous transmission and reception. The impact of the traffic profile and the inter-cell and intra-cell interferences is addressed, individually and jointly. Results show that the increased interference that simultaneous transmission and reception causes is one of the main limiting factors in achieving the promised full-duplex throughput gain, while large traffic asymmetries between downlink and uplink further compromise such gain.
引用
收藏
相关论文
共 50 条
  • [21] Survey of energy efficiency for 5G ultra-dense networks
    Ma Z.-G.
    Song J.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2019, 41 (08): : 968 - 980
  • [22] Achieving Sustainable Ultra-Dense Heterogeneous Networks for 5G
    An, Jianping
    Yang, Kai
    Wu, Jinsong
    Ye, Neng
    Guo, Song
    Liao, Zhifang
    IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (12) : 84 - 90
  • [23] On the Interference Range of Small Cells in the Wireless Backhaul of 5G Ultra-Dense Networks
    Chaudhry, Aizaz U.
    Jacob, Namitha
    George, Dils
    Hafez, Roshdy H. M.
    2020 WIRELESS TELECOMMUNICATIONS SYMPOSIUM (WTS), 2020,
  • [24] CelEc Framework for Reconfigurable Small Cells as Part of 5G Ultra-Dense Networks
    Christophorou, Christophoros
    Pitsillides, Andreas
    Akyildiz, Ian
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [25] Resource Split Full Duplex to Mitigate Inter-Cell Interference in Ultra-Dense Small Cell Networks
    Lee, Haesoon
    Park, Yosub
    Hong, Daesik
    IEEE ACCESS, 2018, 6 : 37653 - 37664
  • [26] SPECTRUM AND NETWORK DENSITY MANAGEMENT IN 5G ULTRA-DENSE NETWORKS
    Koudouridis, Georgios P.
    Soldati, Pablo
    IEEE WIRELESS COMMUNICATIONS, 2017, 24 (05) : 30 - 37
  • [27] Resource-Efficient Decoupling in Ultra-Dense 5G Networks
    Bouras, Christos
    Kokkinos, Vasileios
    Michos, Evangelos
    2019 INTERNATIONAL SYMPOSIUM ON NETWORKS, COMPUTERS AND COMMUNICATIONS (ISNCC 2019), 2019,
  • [28] Hypergraph Theory: Applications in 5G Heterogeneous Ultra-Dense Networks
    Zhang, Hongliang
    Song, Lingyang
    Li, Yonghui
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (12) : 70 - 76
  • [29] Design of Robust Ultra-Dense 5G Networks for Smart Cities
    van den Berg, Hans
    van der Mei, Rob
    van de Ven, Peter
    ERCIM NEWS, 2019, (117): : 15 - 16
  • [30] Wireless Backhaul Capacity of 5G Ultra-Dense Cellular Networks
    Ge, Xiaohu
    Pan, Linghui
    Tu, Song
    Chen, Hsiao-Hwa
    Wang, Cheng-Xiang
    2016 IEEE 84TH VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2016,