New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions

被引:0
|
作者
Muhammad Uzair Awan
Nousheen Akhtar
Sabah Iftikhar
Muhammad Aslam Noor
Yu-Ming Chu
机构
[1] Government College University,Department of Mathematics
[2] COMSATS University Islamabad,Department of Mathematics
[3] Huzhou University,Department of Mathematics
[4] Changsha University of Science & Technology,Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering
关键词
-polynomial; Harmonic convex function; Hermite–Hadamard inequality; 26A51; 26D10; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we introduce a class of n-polynomial harmonically convex functions, establish their several new Hermite–Hadamard type inequalities which are the generalizations and variants of the previously known results for harmonically convex functions.
引用
收藏
相关论文
共 50 条
  • [1] New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions
    Awan, Muhammad Uzair
    Akhtar, Nousheen
    Iftikhar, Sabah
    Noor, Muhammad Aslam
    Chu, Yu-Ming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [2] New inequalities via n-polynomial harmonically exponential type convex functions
    Gao, Wei
    Kashuri, Artion
    Butt, Saad Ihsan
    Tariq, Muhammad
    Aslam, Adnan
    Nadeem, Muhammad
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 6856 - 6873
  • [3] On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes
    Fu, Haoliang
    Saleem, Muhammad Shoaib
    Nazeer, Waqas
    Ghafoor, Mamoona
    Li, Peigen
    [J]. AIMS MATHEMATICS, 2021, 6 (06): : 6322 - 6339
  • [4] On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions
    Samraiz, Muhammad
    Saeed, Kanwal
    Naheed, Saima
    Rahman, Gauhar
    Nonlaopon, Kamsing
    [J]. AIMS MATHEMATICS, 2022, 7 (08): : 14282 - 14298
  • [5] NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR n-POLYNOMIAL s-TYPE CONVEX STOCHASTIC PROCESSES
    Kalsoom, Humaira
    Khan, Zareen A.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (10)
  • [6] Hermite-Hadamard type inequalities for harmonically convex functions
    Iscan, Iindat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (06): : 935 - 942
  • [7] Hermite-Hadamard type inequalities for a new class of harmonically convex functions
    Olanipekun, Peter Olamide
    Mogbademu, Adesanmi A.
    Dragomir, Sever Silvestru
    [J]. NOTE DI MATEMATICA, 2018, 38 (01): : 23 - 33
  • [8] Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions
    Nwaeze, Eze R.
    Khan, Muhammad Adil
    Ahmadian, Ali
    Ahmad, Mohammad Nazir
    Mahmood, Ahmad Kamil
    [J]. AIMS MATHEMATICS, 2021, 6 (02): : 1889 - 1904
  • [9] NEW CONFORMABLE FRACTIONAL HERMITE HADAMARD TYPE INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS
    Sanli, Zeynep
    Koroglu, Tuncay
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 9 (06): : 77 - 91
  • [10] New Hermite-Hadamard type Inequalities for Harmonically-Convex Functions
    Latif, Muhammad Amer
    Hussain, Sabir
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (06): : 1 - 16