Opial integral inequalities for generalized fractional operators with nonsingular kernel

被引:0
|
作者
Pshtiwan Othman Mohammed
Thabet Abdeljawad
机构
[1] University of Sulaimani,Department of Mathematics, College of Education
[2] Prince Sultan University,Department of Mathematics and General Sciences
[3] China Medical University,Department of Medical Research
[4] Asia University,Department of Computer Science and Information Engineering
关键词
Fractional integrals; Opial inequalities; Convex functions; 26D07; 26D10; 26D15; 26A33;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the well-known classes of functions U1(v,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{U}_{1}(\mathbf{v},\mathtt{k})$\end{document} and U2(v,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{U}_{2}(\mathbf{v},\mathtt{k})$\end{document}, and those of Opial inequalities defined on these classes. In view of these indices, we establish new aspects of the Opial integral inequality and related inequalities, in the context of fractional integrals and derivatives defined using nonsingular kernels, particularly the Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) models of fractional calculus.
引用
收藏
相关论文
共 50 条
  • [1] Opial integral inequalities for generalized fractional operators with nonsingular kernel
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [2] Some generalized fractional integral inequalities with nonsingular function as a kernel
    Mubeen, Shahid
    Ali, Rana Safdar
    Nayab, Iqra
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3352 - 3377
  • [3] Estimation of generalized fractional integral operators with nonsingular function as a kernel
    Nayab, Iqra
    Mubeen, Shahid
    Ali, Rana Safdar
    Rahman, Gauhar
    Abdel-Aty, Abdel-Haleem
    Mahmoud, Emad E.
    Nisar, Kottakkaran Sooppy
    [J]. AIMS MATHEMATICS, 2021, 6 (05): : 4492 - 4506
  • [4] Opial-type Inequalities for Generalized Integral Operators With Special Kernels in Fractional Calculus
    Samraiz, Muhammad
    Afzal, Muhammad Arslan
    Iqbal, Sajid
    Kashuri, Artion
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (03): : 421 - 431
  • [5] GENERALIZED OPIAL-TYPE INEQUALITIES FOR DIFFERENTIAL AND INTEGRAL OPERATORS WITH SPECIAL KERNELS IN FRACTIONAL CALCULUS
    Farid, G.
    Pecaric, J.
    Tomovski, Z.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 1019 - 1040
  • [6] SOME INTEGRAL INEQUALITIES IN THE FRAMEWORK OF GENERALIZED K-PROPORTIONAL FRACTIONAL INTEGRAL OPERATORS WITH GENERAL KERNEL
    Napoles Valdes, Juan E.
    [J]. HONAM MATHEMATICAL JOURNAL, 2021, 43 (04): : 587 - 596
  • [7] Generalized integral inequalities for ABK-fractional integral operators
    Butt, Saad Ihsan
    Set, Erhan
    Yousaf, Saba
    Abdeljawad, Thabet
    Shatanawi, Wasfi
    [J]. AIMS MATHEMATICS, 2021, 6 (09): : 10164 - 10191
  • [8] Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel
    Pshtiwan Othman Mohammed
    Thabet Abdeljawad
    [J]. Advances in Difference Equations, 2020
  • [9] Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] Weighted norm inequalities for fractional integral operators with rough kernel
    Ding, Y
    Lu, SZ
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (01): : 29 - 39