Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel

被引:44
|
作者
Mohammed, Pshtiwan Othman [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Riemann-Liouville fractional integral; Mittag-Leffler function; Integral inequalities; HADAMARD TYPE INEQUALITIES; MITTAG-LEFFLER FUNCTION; DIFFERENTIAL-EQUATIONS; DERIVATIVES;
D O I
10.1186/s13662-020-02825-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
At first, we construct a connection between the Atangana-Baleanu and the Riemann-Liouville fractional integrals of a function with respect to a monotone function with nonsingular kernel. By examining this relationship and the iterated form of Prabhakar fractional model, we are able to find some new Hermite-Hadamard inequalities and related results on integral inequalities for the two models of fractional calculus which are defined using monotone functions with nonsingular kernels.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel
    Pshtiwan Othman Mohammed
    Thabet Abdeljawad
    [J]. Advances in Difference Equations, 2020
  • [2] Some generalized fractional integral inequalities with nonsingular function as a kernel
    Mubeen, Shahid
    Ali, Rana Safdar
    Nayab, Iqra
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3352 - 3377
  • [3] NEW ESTIMATES OF INTEGRAL INEQUALITIES VIA GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATOR WITH RESPECT TO ANOTHER FUNCTION
    Rashid, Saima
    Hammouch, Zakia
    Jarad, Fahd
    Chu, Yu-Ming
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
  • [4] Integral Inequalities for Riemann-Liouville Fractional Integrals of a Function With Respect to Another Function
    Kacar, Ergun
    Kacar, Zeynep
    Yildirim, Huseyin
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2018, 13 (01): : 1 - 13
  • [5] Inequalities by Means of Generalized Proportional Fractional Integral Operators with Respect to Another Function
    Rashid, Saima
    Jarad, Fahd
    Noor, Muhammad Aslam
    Kalsoom, Humaira
    Chu, Yu-Ming
    [J]. MATHEMATICS, 2019, 7 (12)
  • [6] Estimation of generalized fractional integral operators with nonsingular function as a kernel
    Nayab, Iqra
    Mubeen, Shahid
    Ali, Rana Safdar
    Rahman, Gauhar
    Abdel-Aty, Abdel-Haleem
    Mahmoud, Emad E.
    Nisar, Kottakkaran Sooppy
    [J]. AIMS MATHEMATICS, 2021, 6 (05): : 4492 - 4506
  • [7] Fractional Hermite-Jensen-Mercer Integral Inequalities with respect to Another Function and Application
    Butt, Saad Ihsan
    Umar, Muhammad
    Khan, Khuram Ali
    Kashuri, Artion
    Emadifar, Homan
    [J]. COMPLEXITY, 2021, 2021
  • [8] Integral inequalities via Raina’s fractional integrals operator with respect to a monotone function
    Shu-Bo Chen
    Saima Rashid
    Zakia Hammouch
    Muhammad Aslam Noor
    Rehana Ashraf
    Yu-Ming Chu
    [J]. Advances in Difference Equations, 2020
  • [9] Integral inequalities via Raina's fractional integrals operator with respect to a monotone function
    Chen, Shu-Bo
    Rashid, Saima
    Hammouch, Zakia
    Noor, Muhammad Aslam
    Ashraf, Rehana
    Chu, Yu-Ming
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] Weighted Montgomery identity for the fractional integral of a function with respect to another function
    Aljinovic, Andrea Aglic
    Krnic, Mario
    Pecaric, Josip
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (01) : 1 - 10