Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel

被引:44
|
作者
Mohammed, Pshtiwan Othman [1 ]
Abdeljawad, Thabet [2 ,3 ,4 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] Prince Sultan Univ, Dept Math & Gen Sci, POB 66833, Riyadh 11586, Saudi Arabia
[3] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[4] Asia Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
关键词
Riemann-Liouville fractional integral; Mittag-Leffler function; Integral inequalities; HADAMARD TYPE INEQUALITIES; MITTAG-LEFFLER FUNCTION; DIFFERENTIAL-EQUATIONS; DERIVATIVES;
D O I
10.1186/s13662-020-02825-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
At first, we construct a connection between the Atangana-Baleanu and the Riemann-Liouville fractional integrals of a function with respect to a monotone function with nonsingular kernel. By examining this relationship and the iterated form of Prabhakar fractional model, we are able to find some new Hermite-Hadamard inequalities and related results on integral inequalities for the two models of fractional calculus which are defined using monotone functions with nonsingular kernels.
引用
收藏
页数:19
相关论文
共 50 条