Fractional Hermite-Jensen-Mercer Integral Inequalities with respect to Another Function and Application

被引:11
|
作者
Butt, Saad Ihsan [1 ]
Umar, Muhammad [2 ]
Khan, Khuram Ali [3 ]
Kashuri, Artion [4 ]
Emadifar, Homan [5 ]
机构
[1] COMSATs Univ Islamabad, Lahore Campus, Lahore, Pakistan
[2] Afro Asian Inst, Lahore, Pakistan
[3] Univ Sargdha, Dept Math, Sargodha 40100, Pakistan
[4] Univ Ismail Qemali, Fac Tech Sci, Dept Math, Vlore 9400, Albania
[5] Islamic Azad Univ, Dept Math, Hamedan Branch, Hamadan, Hamadan, Iran
关键词
D O I
10.1155/2021/9260828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, authors prove new variants of Hermite-Jensen-Mercer type inequalities using psi-Riemann-Liouville fractional integrals with respect to another function via convexity. We establish generalized identities involving psi-Riemann-Liouville fractional integral pertaining first and twice differentiable convex function lambda, and these will be used to derive novel estimates for some fractional Hermite-Jensen-Mercer type inequalities. Some known results are recaptured from our results as special cases. Finally, an application from our results using the modified Bessel function of the first kind is established as well.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] ON QUANTUM HERMITE-JENSEN-MERCER INEQUALITIES
    Budak, Huseyin
    Kara, Hasan
    [J]. MISKOLC MATHEMATICAL NOTES, 2023, 24 (03) : 1247 - 1257
  • [2] Hermite-Jensen-Mercer Type Inequalities for Caputo Fractional Derivatives
    Zhao, Jinchao
    Butt, Saad Ihsan
    Nasir, Jamshed
    Wang, Zhaobo
    Tlili, Iskander
    [J]. JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [3] Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function
    Ma, Fangfang
    [J]. AIMS MATHEMATICS, 2022, 7 (01): : 784 - 803
  • [4] New Variant of Hermite-Jensen-Mercer Inequalities via Riemann-Liouville Fractional Integral Operators
    Kang, Qiong
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nadeem, Mehroz
    Nasir, Jamshed
    Yang, Hong
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [5] ON NEW VERSION OF HERMITE-JENSEN-MERCER INEQUALITIES FOR NEWLY DEFINED QUANTUM INTEGRAL
    Gulshan, Ghazala
    Budak, Huseyin
    Hussain, Rashida
    Sadiq, Asad
    Kosem, Pinar
    [J]. MISKOLC MATHEMATICAL NOTES, 2023, 24 (03) : 1235 - 1245
  • [6] POST-QUANTUM HERMITE-JENSEN-MERCER INEQUALITIES
    Bohner, Martin
    Budak, Huseyin
    Kara, Hasan
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 17 - 26
  • [7] Hermite-Jensen-Mercer type inequalities for conformable integrals and related results
    Butt, Saad Ihsan
    Nadeem, Mehroz
    Qaisar, Shahid
    Akdemir, Ahmet Ocak
    Abdeljawad, Thabet
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [8] Some Hermite-Jensen-Mercer type inequalities for k-Caputo-fractional derivatives and related results
    Zhao, Shupeng
    Butt, Saad Ihsan
    Nazeer, Waqas
    Nasir, Jamshed
    Umar, Muhammad
    Liu, Ya
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [9] Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals
    Butt, Saad Ihsan
    Kashuri, Artion
    Umar, Muhammad
    Aslam, Adnan
    Gao, Wei
    [J]. AIMS MATHEMATICS, 2020, 5 (05): : 5193 - 5220
  • [10] The Hermite-Hadamard-Jensen-Mercer Type Inequalities for Riemann-Liouville Fractional Integral
    Wang, Hua
    Khan, Jamroz
    Adil Khan, Muhammad
    Khalid, Sadia
    Khan, Rewayat
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021