Weighted norm inequalities for fractional integral operators with rough kernel

被引:79
|
作者
Ding, Y [1 ]
Lu, SZ [1 ]
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
关键词
D O I
10.4153/CJM-1998-003-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given function Omega on R-n, we define the fractional maximal operator and fractional integral operator by M(Omega.alpha)f(x) = sup 1/r>0(rn-alpha)integral(\y\<r)\Omega(y)parallel to f(x-y)\dy and T(Omega.alpha)f(x) = integral R-n Omega(y)/\y\(n-alpha)f(x-y) dy respectively, where 0 < alpha < n. In this paper we study the weighted norm inequalities of M-Omega.alpha and T-Omega.alpha for appropriate alpha, s and A(p,q) weights in the case that Omega epsilon L-s (Sn-1) (s > 1), homogeneous of degree zero.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 50 条