Convergent Algorithm Based on Progressive Regularization for Solving Pseudomonotone Variational Inequalities

被引:0
|
作者
N. El Farouq
机构
[1] Université Blaise Pascal,Maître de Conférences
关键词
Variational inequalities; generalized monotonicity; pseudomonotonicity; regularization; convergence of algorithms; decomposition.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extend the Moreau-Yosida regularization of monotone variational inequalities to the case of weakly monotone and pseudomonotone operators. With these properties, the regularized operator satisfies the pseudo-Dunn property with respect to any solution of the variational inequality problem. As a consequence, the regularized version of the auxiliary problem algorithm converges. In this case, when the operator involved in the variational inequality problem is Lipschitz continuous (a property stronger than weak monotonicity) and pseudomonotone, we prove the convergence of the progressive regularization introduced in Refs. 1, 2.
引用
收藏
页码:455 / 485
页数:30
相关论文
共 50 条
  • [1] Convergent algorithm based on progressive regularization for solving pseudomonotone variational inequalities
    El Farouq, N
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 120 (03) : 455 - 485
  • [2] An extragradient algorithm for solving bilevel pseudomonotone variational inequalities
    Anh, P. N.
    Kim, J. K.
    Muu, L. D.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (03) : 627 - 639
  • [3] An extragradient algorithm for solving bilevel pseudomonotone variational inequalities
    P. N. Anh
    J. K. Kim
    L. D. Muu
    [J]. Journal of Global Optimization, 2012, 52 : 627 - 639
  • [4] Regularization of Brezis pseudomonotone variational inequalities
    Bianchi, M.
    Kassay, G.
    Pini, R.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (01) : 175 - 190
  • [5] Regularization of Brézis pseudomonotone variational inequalities
    M. Bianchi
    G. Kassay
    R. Pini
    [J]. Set-Valued and Variational Analysis, 2021, 29 : 175 - 190
  • [6] A strong convergence algorithm for solving pseudomonotone variational inequalities with a single projection
    Okeke, Chibueze C.
    Bello, Abdulmalik U.
    Oyewole, Olawale K.
    [J]. JOURNAL OF ANALYSIS, 2022, 30 (03): : 965 - 987
  • [7] AN INERTIAL SUBGRADIENT-EXTRAGRADIENT ALGORITHM FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES
    Liu, Liya
    Petrusel, Adrian
    Qin, Xiaolong
    Yao, Jen-Chih
    [J]. FIXED POINT THEORY, 2022, 23 (02): : 533 - 555
  • [8] A strong convergence algorithm for solving pseudomonotone variational inequalities with a single projection
    Chibueze C. Okeke
    Abdulmalik U. Bello
    Olawale K. Oyewole
    [J]. The Journal of Analysis, 2022, 30 : 965 - 987
  • [9] Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces
    Hieu, Dang Van
    Cho, Yeol Je
    Xiao, Yi-bin
    Kumam, Poom
    [J]. OPTIMIZATION, 2020, 69 (10) : 2279 - 2304
  • [10] A class of globally convergent algorithms for pseudomonotone variational inequalities
    Solodov, MV
    [J]. COMPLEMENTARITY: APPLICATIONS, ALGORITHMS AND EXTENSIONS, 2001, 50 : 297 - 315