Convergent Algorithm Based on Progressive Regularization for Solving Pseudomonotone Variational Inequalities

被引:0
|
作者
N. El Farouq
机构
[1] Université Blaise Pascal,Maître de Conférences
关键词
Variational inequalities; generalized monotonicity; pseudomonotonicity; regularization; convergence of algorithms; decomposition.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we extend the Moreau-Yosida regularization of monotone variational inequalities to the case of weakly monotone and pseudomonotone operators. With these properties, the regularized operator satisfies the pseudo-Dunn property with respect to any solution of the variational inequality problem. As a consequence, the regularized version of the auxiliary problem algorithm converges. In this case, when the operator involved in the variational inequality problem is Lipschitz continuous (a property stronger than weak monotonicity) and pseudomonotone, we prove the convergence of the progressive regularization introduced in Refs. 1, 2.
引用
收藏
页码:455 / 485
页数:30
相关论文
共 50 条
  • [41] CONSTRUCTION AND ANALYSIS OF ITERATIVE METHODS FOR SOLVING FIXED POINTS AND PSEUDOMONOTONE VARIATIONAL INEQUALITIES
    Yin, Tzu-Chien
    Shahzad, Naseer
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (04): : 83 - 94
  • [42] Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces
    Pham Ngoc Anh
    T. V. Thang
    H. T. C. Thach
    [J]. Numerical Algorithms, 2021, 87 : 335 - 363
  • [43] Modified self-adaptive projection method for solving pseudomonotone variational inequalities
    Yu, Zeng
    Shao, Hu
    Wang, Guodong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) : 8052 - 8060
  • [44] Generalized iterative process and associated regularization for J-Pseudomonotone mixed variational inequalities
    Saddeek, A. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 213 (01) : 8 - 17
  • [45] A new feasible moving ball projection algorithm for pseudomonotone variational inequalities
    Feng, Limei
    Zhang, Yongle
    He, Yiran
    [J]. OPTIMIZATION LETTERS, 2024, 18 (06) : 1437 - 1455
  • [46] Improved subgradient extragradient methods for solving pseudomonotone variational inequalities in Hilbert spaces
    Duong Viet Thong
    Phan Tu Vuong
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 221 - 238
  • [47] Halpern projection methods for solving pseudomonotone multivalued variational inequalities in Hilbert spaces
    Pham Ngoc Anh
    Thang, T., V
    Thach, H. T. C.
    [J]. NUMERICAL ALGORITHMS, 2021, 87 (01) : 335 - 363
  • [48] Extragradient Methods for Pseudomonotone Variational Inequalities
    M.A. Noor
    [J]. Journal of Optimization Theory and Applications, 2003, 117 : 475 - 488
  • [49] PSEUDOMONOTONE VARIATIONAL INEQUALITIES AND FIXED POINTS
    Ceng, L. C.
    Petrusel, A.
    Qin, X.
    Yao, J. C.
    [J]. FIXED POINT THEORY, 2021, 22 (02): : 543 - 558
  • [50] A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities
    Bao, TQ
    Khanh, PQ
    [J]. GENERALIZED CONVEXITY, GENERALIZED MONOTONICITY AND APPLICATIONS, 2005, 77 : 113 - 129