Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering

被引:0
|
作者
Senhong Wang
Jiangzhong Cao
Fangyuan Lei
Jianjian Jiang
Qingyun Dai
Bingo Wing-Kuen Ling
机构
[1] Guangdong University of Technology,School of Information Engineering
[2] Guangdong Polytechnic Normal University,Guangdong Provincial Key Laboratory of Intellectual Property and Big Data
来源
Applied Intelligence | 2023年 / 53卷
关键词
Incomplete multi-view clustering; Anchor graph; Multiple kernel; Low-rank tensor constraint; Consensus graph constraint;
D O I
暂无
中图分类号
学科分类号
摘要
Incomplete Multi-View Clustering (IMVC) attempts to give an optimal clustering solution for incomplete multi-view data that suffer from missing instances in certain views. However, most existing IMVC methods still have various drawbacks in practical applications, such as arbitrary incomplete scenarios cannot be handled; the computational cost is relatively high; most valuable nonlinear relations among samples are often ignored; complementary information among views is not sufficiently exploited. To address the above issues, in this paper, we present a novel and flexible unified graph learning framework, called Multiple Kernel-based Anchor Graph coupled low-rank Tensor learning for Incomplete Multi-View Clustering (MKAGT_IMVC), whose goal is to adaptively learn the optimal unified similarity matrix from all incomplete views. Specifically, according to the characteristics of incomplete multi-view data, MKAGT_IMVC innovatively improves an anchor selection strategy. Then, a novel cross-view anchor graph fusion mechanism is introduced to construct multiple fused complete anchor graphs, which captures more the intra-view and inter-view nonlinear relations. Moreover, a graph learning model combining low-rank tensor constraint and consensus graph constraint is developed, where all fused complete anchor graphs are regarded as prior knowledge to initialize this model. Extensive experiments conducted on eight incomplete multi-view datasets clearly show that our method delivers superior performance relative to some state-of-the-art methods in terms of clustering ability and time-consuming.
引用
收藏
页码:3687 / 3712
页数:25
相关论文
共 50 条
  • [1] Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering
    Wang, Senhong
    Cao, Jiangzhong
    Lei, Fangyuan
    Jiang, Jianjian
    Dai, Qingyun
    Ling, Bingo Wing-Kuen
    [J]. APPLIED INTELLIGENCE, 2023, 53 (04) : 3687 - 3712
  • [2] Low-Rank Kernel Tensor Learning for Incomplete Multi-View Clustering
    Wu, Tingting
    Feng, Songhe
    Yuan, Jiazheng
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15952 - 15960
  • [3] Low-rank Tensor Graph Learning Based Incomplete Multi-view Clustering
    Wen, Jie
    Yan, Ke
    Zhang, Zheng
    Xu, Yong
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1433 - 1445
  • [4] Unbalanced incomplete multi-view clustering based on low-rank tensor graph learning
    Ji, Guangyan
    Lu, Gui-Fu
    Cai, Bing
    Du, Yangfan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 225
  • [5] Unified Graph and Low-Rank Tensor Learning for Multi-View Clustering
    Wu, Jianlong
    Xie, Xingxu
    Nie, Liqiang
    Lin, Zhouchen
    Zha, Hongbin
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6388 - 6395
  • [6] Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering
    Chen, Yongyong
    Xiao, Xiaolin
    Peng, Chong
    Lu, Guangming
    Zhou, Yicong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 92 - 104
  • [7] INCOMPLETE MULTI-VIEW SUBSPACE CLUSTERING WITH LOW-RANK TENSOR
    Liu, Jianlun
    Teng, Shaohua
    Zhang, Wei
    Fang, Xiaozhao
    Fei, Lunke
    Zhang, Zhuxiu
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3180 - 3184
  • [8] Effective Incomplete Multi-View Clustering via Low-Rank Graph Tensor Completion
    Yu, Jinshi
    Duan, Qi
    Huang, Haonan
    He, Shude
    Zou, Tao
    [J]. MATHEMATICS, 2023, 11 (03)
  • [9] Tensor Low-Rank Graph Embedding and Learning for One-Step Incomplete Multi-View Clustering
    Wan, Minghua
    Zhu, Jingyu
    Sun, Chengli
    Yang, Zhangjing
    Yin, Jun
    Yang, Guowei
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9763 - 9775
  • [10] Low-Rank Tensor Based Proximity Learning for Multi-View Clustering
    Chen, Man-Sheng
    Wang, Chang-Dong
    Lai, Jian-Huang
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 5076 - 5090