Effective Incomplete Multi-View Clustering via Low-Rank Graph Tensor Completion

被引:7
|
作者
Yu, Jinshi [1 ]
Duan, Qi [2 ]
Huang, Haonan [3 ]
He, Shude [1 ]
Zou, Tao [1 ,4 ]
机构
[1] Guangzhou Univ, Sch Mech & Elect Engn, Guangzhou 510006, Peoples R China
[2] Guangzhou Panyu Polytech, Guangzhou 510006, Peoples R China
[3] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[4] Pazhou Lab, Guangzhou 510330, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
incomplete multi-view clustering; common representation; low-rank completion; similarity graph;
D O I
10.3390/math11030652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the past decade, multi-view clustering has received a lot of attention due to the popularity of multi-view data. However, not all samples can be observed from every view due to some unavoidable factors, resulting in the incomplete multi-view clustering (IMC) problem. Up until now, most efforts for the IMC problem have been made on the learning of consensus representations or graphs, while many missing views are ignored, making it impossible to capture the information hidden in the missing view. To overcome this drawback, we first analyzed the low-rank relationship existing inside each graph and among all graphs, and then propose a novel method for the IMC problem via low-rank graph tensor completion. Specifically, we first stack all similarity graphs into a third-order graph tensor and then exploit the low-rank relationship from each mode using the matrix nuclear norm. In this way, the connection hidden between the missing and available instances can be recovered. The consensus representation can be learned from all completed graphs via multi-view spectral clustering. To obtain the optimal multi-view clustering result, incomplete graph recovery and consensus representation learning are integrated into a joint framework for optimization. Extensive experimental results on several incomplete multi-view datasets demonstrate that the proposed method can obtain a better clustering performance in comparison with state-of-the-art incomplete multi-view clustering methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Low-rank Tensor Graph Learning Based Incomplete Multi-view Clustering
    Wen J.
    Yan K.
    Zhang Z.
    Xu Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (07): : 1433 - 1445
  • [2] INCOMPLETE MULTI-VIEW SUBSPACE CLUSTERING WITH LOW-RANK TENSOR
    Liu, Jianlun
    Teng, Shaohua
    Zhang, Wei
    Fang, Xiaozhao
    Fei, Lunke
    Zhang, Zhuxiu
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3180 - 3184
  • [3] Unbalanced incomplete multi-view clustering based on low-rank tensor graph learning
    Ji, Guangyan
    Lu, Gui-Fu
    Cai, Bing
    Du, Yangfan
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 225
  • [4] Low-Rank Kernel Tensor Learning for Incomplete Multi-View Clustering
    Wu, Tingting
    Feng, Songhe
    Yuan, Jiazheng
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15952 - 15960
  • [5] Unified Graph and Low-Rank Tensor Learning for Multi-View Clustering
    Wu, Jianlong
    Xie, Xingxu
    Nie, Liqiang
    Lin, Zhouchen
    Zha, Hongbin
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6388 - 6395
  • [6] Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering
    Chen, Yongyong
    Xiao, Xiaolin
    Peng, Chong
    Lu, Guangming
    Zhou, Yicong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 92 - 104
  • [7] Consensus latent incomplete multi-view clustering with low-rank tensor constraint
    Ji, Guangyan
    Lu, Gui-Fu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (11) : 3813 - 3825
  • [8] Consensus latent incomplete multi-view clustering with low-rank tensor constraint
    Guangyan Ji
    Gui-Fu Lu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3813 - 3825
  • [9] Tensor Low-Rank Graph Embedding and Learning for One-Step Incomplete Multi-View Clustering
    Wan, Minghua
    Zhu, Jingyu
    Sun, Chengli
    Yang, Zhangjing
    Yin, Jun
    Yang, Guowei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9763 - 9775
  • [10] INCOMPLETE multi-view clustering based on low-rank adaptive graph learning
    Zhu, Jingyu
    Wan, Minghua
    Yang, Guowei
    Yang, Zhangjing
    KNOWLEDGE-BASED SYSTEMS, 2024, 305