Modified scattering for a dispersion-managed nonlinear Schrödinger equation

被引:0
|
作者
Jason Murphy
Tim Van Hoose
机构
[1] Missouri S&T,Department of Mathematics & Statistics
关键词
Dispersion-managed NLS; Modified scattering; 35L71;
D O I
暂无
中图分类号
学科分类号
摘要
We prove sharp L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} decay and modified scattering for a one-dimensional dispersion-managed cubic nonlinear Schrödinger equation with small initial data chosen from a weighted Sobolev space. Specifically, we work with an averaged version of the dispersion-managed NLS in the strong dispersion management regime. The proof adapts techniques from Hayashi and Naumkin (Am. J. Math. 120(2):369–389, 1998) and Kato and Pusateri (Differ Integral Equ 24(9–10):923–940, 2011), which established small-data modified scattering for the standard 1d cubic NLS.
引用
收藏
相关论文
共 50 条
  • [41] Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index
    Kudryashov, Nikolay A.
    Applied Mathematics Letters, 2022, 128
  • [42] Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth
    Takafumi Akahori
    Slim Ibrahim
    Hiroaki Kikuchi
    Hayato Nawa
    Selecta Mathematica, 2013, 19 : 545 - 609
  • [43] Inverse scattering transform for the integrable fractional derivative nonlinear Schrödinger equation
    An, Ling
    Ling, Liming
    Zhang, Xiaoen
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 458
  • [44] Some regularity properties of scattering data for the derivative nonlinear Schrödinger equation
    Weng, Weifang
    Yan, Zhenya
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2025, 77 (05)
  • [45] Numerical solution of the nonlinear Schrödinger equation, starting from the scattering data
    A. Aricò
    G. Rodriguez
    S. Seatzu
    Calcolo, 2011, 48 : 75 - 88
  • [46] Dispersion-managed solitons as nonlinear Bloch waves
    Haus, HA
    Chen, YJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1999, 16 (06) : 889 - 894
  • [47] Unveiling complexity: Exploring chaos and solitons in modified nonlinear Schrödinger equation
    Wang, Pengfei
    Yin, Feng
    Rahman, Mati ur
    Khan, Meraj Ali
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2024, 56
  • [48] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [49] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    Acta Mathematica Scientia, 2022, 42 : 2230 - 2256
  • [50] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,