Modified scattering for a dispersion-managed nonlinear Schrödinger equation

被引:0
|
作者
Jason Murphy
Tim Van Hoose
机构
[1] Missouri S&T,Department of Mathematics & Statistics
关键词
Dispersion-managed NLS; Modified scattering; 35L71;
D O I
暂无
中图分类号
学科分类号
摘要
We prove sharp L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} decay and modified scattering for a one-dimensional dispersion-managed cubic nonlinear Schrödinger equation with small initial data chosen from a weighted Sobolev space. Specifically, we work with an averaged version of the dispersion-managed NLS in the strong dispersion management regime. The proof adapts techniques from Hayashi and Naumkin (Am. J. Math. 120(2):369–389, 1998) and Kato and Pusateri (Differ Integral Equ 24(9–10):923–940, 2011), which established small-data modified scattering for the standard 1d cubic NLS.
引用
收藏
相关论文
共 50 条
  • [31] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [32] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [33] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [34] Maximal Amplitudes of Hyperelliptic Solutions of the Modified Nonlinear Schrödinger Equation
    Wright III, Otis C.
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (05)
  • [35] Soliton solution of nonlinear Schrödinger equation with higher order dispersion terms
    Pan Z.
    Zheng K.
    Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (2) : 151 - 154
  • [36] Optical solitons of the coupled nonlinear Schrödinger’s equation with spatiotemporal dispersion
    Mustafa Inc
    Esma Ates
    Fairouz Tchier
    Nonlinear Dynamics, 2016, 85 : 1319 - 1329
  • [37] Topological Solitons of the Nonlinear Schrödinger’s Equation with Fourth Order Dispersion
    Anjan Biswas
    Daniela Milovic
    International Journal of Theoretical Physics, 2009, 48
  • [38] Numerical Integrators for Dispersion-Managed KdV Equation
    He, Ying
    Zhao, Xiaofei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 31 (04) : 1180 - 1214
  • [39] Decay Estimates and Smoothness for Solutions of the Dispersion Managed Non-linear Schrödinger Equation
    Dirk Hundertmark
    Young-Ran Lee
    Communications in Mathematical Physics, 2009, 286 : 851 - 873
  • [40] Chirped optical solitons and stability analysis of the nonlinear Schr?dinger equation with nonlinear chromatic dispersion
    Thilagarajah Mathanaranjan
    Mir Sajjad Hashemi
    Hadi Rezazadeh
    Lanre Akinyemi
    Ahmet Bekir
    Communications in Theoretical Physics, 2023, 75 (08) : 56 - 64