Modified scattering for a dispersion-managed nonlinear Schrödinger equation

被引:0
|
作者
Jason Murphy
Tim Van Hoose
机构
[1] Missouri S&T,Department of Mathematics & Statistics
关键词
Dispersion-managed NLS; Modified scattering; 35L71;
D O I
暂无
中图分类号
学科分类号
摘要
We prove sharp L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document} decay and modified scattering for a one-dimensional dispersion-managed cubic nonlinear Schrödinger equation with small initial data chosen from a weighted Sobolev space. Specifically, we work with an averaged version of the dispersion-managed NLS in the strong dispersion management regime. The proof adapts techniques from Hayashi and Naumkin (Am. J. Math. 120(2):369–389, 1998) and Kato and Pusateri (Differ Integral Equ 24(9–10):923–940, 2011), which established small-data modified scattering for the standard 1d cubic NLS.
引用
收藏
相关论文
共 50 条
  • [1] Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation
    Tobias Jahnke
    Marcel Mikl
    Numerische Mathematik, 2018, 138 : 975 - 1009
  • [2] WELL-POSEDNESS AND BLOWUP FOR THE DISPERSION-MANAGED NONLINEAR SCHR?DINGER EQUATION
    Murphy, Jason
    Van Hoose, Tim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2489 - 2502
  • [3] Modified scattering for a dispersion-managed nonlinear Schrodinger equation
    Murphy, Jason
    Van Hoose, Tim
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 29 (01):
  • [4] Kink Waves in an Extended Nonlinear Schrödinger Equation with Allowance for Stimulated Scattering and Nonlinear Dispersion
    E. M. Gromov
    V. V. Tyutin
    Radiophysics and Quantum Electronics, 2014, 57 : 279 - 286
  • [5] Ground states of dispersion-managed nonlinear Schrodinger equation
    Zharnitsky, V
    Grenier, E
    Turitsyn, SK
    Jones, CKRT
    Hesthaven, JS
    PHYSICAL REVIEW E, 2000, 62 (05): : 7358 - 7364
  • [6] The low energy scattering for nonlinear Schrödinger equation
    Conghui Fang
    Zheng Han
    Revista Matemática Complutense, 2023, 36 : 125 - 140
  • [7] Solitons in a modified discrete nonlinear Schrödinger equation
    Mario I. Molina
    Scientific Reports, 8
  • [8] The modified nonlinear Schrödinger equation: facts and artefacts
    E.V. Doktorov
    The European Physical Journal B - Condensed Matter and Complex Systems, 2002, 29 : 227 - 231
  • [9] Modified scattering for the nonlinear nonlocal Schrödinger equation in one-dimensional case
    Nakao Hayashi
    Pavel I. Naumkin
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [10] Adiabatic midpoint rule for the dispersion-managed nonlinear Schrodinger equation
    Jahnke, Tobias
    Mikl, Marcel
    NUMERISCHE MATHEMATIK, 2018, 138 (04) : 975 - 1009