Choice of optimal second stage designs in two-stage experiments

被引:0
|
作者
A. M. Elsawah
机构
[1] Zagazig University,Department of Mathematics, Faculty of Science
[2] BNU-HKBU United International College,Division of Science and Technology
来源
Computational Statistics | 2018年 / 33卷
关键词
Second stage design; Second stage map; Two-stage design; Uniform design; Optimal design; Complementary design;
D O I
暂无
中图分类号
学科分类号
摘要
In real-life projects, in order to obtain precious information about the process, we often partition the experiment into two stages with equal size. The main purpose of this article is to study how to choose the first stage experimental designs (FSED) and the second stage experimental designs (SSED) to construct uniform or at least good approximation to uniform (GATU) two-stage experimental designs (TSED) that involve a mixture of ω1≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _1\ge 1$$\end{document} factors with μ1≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _1\ge 2$$\end{document} levels and ω2≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _2\ge 1$$\end{document} factors with μ2≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _2\ge 2$$\end{document} levels whether regular or nonregular. Through theoretical justification, this paper proves that the SSED is uniform (GATU) if and only if the FSED is uniform (GATU), the TSED is uniform (GATU) if and only if its corresponding complementary TSED is uniform (GATU), and the TSED is uniform or at least GATU if and only if the FSED is uniform.
引用
收藏
页码:933 / 965
页数:32
相关论文
共 50 条
  • [31] A note on the shape of sample size functions of optimal adaptive two-stage designs
    Pilz, Maximilian
    Kilian, Samuel
    Kieser, Meinhard
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (06) : 1911 - 1918
  • [32] Optimal Two-Stage Phase II Designs with Long-Term Endpoints
    Huang, Bo
    Talukder, Enayet
    Thomas, Neal
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2010, 2 (01): : 51 - 61
  • [33] Optimal Robust Two-Stage Designs for Genome-Wide Association Studies
    Nguyen, Thuy Trang
    Pahl, Roman
    Schaefer, Helmut
    ANNALS OF HUMAN GENETICS, 2009, 73 : 638 - 651
  • [34] Optimal adaptive two-stage designs for early phase II clinical trials
    Shan, Guogen
    Wilding, Gregory E.
    Hutson, Alan D.
    Gerstenberger, Shawn
    STATISTICS IN MEDICINE, 2016, 35 (08) : 1257 - 1266
  • [35] Optimal two-stage genotyping designs for genome-wide association scans
    Wang, HS
    Thomas, DC
    Pe'er, I
    Stram, DO
    GENETIC EPIDEMIOLOGY, 2006, 30 (04) : 356 - 368
  • [36] Optimal adaptive two-stage designs for phase II cancer clinical trials
    Englert, Stefan
    Kieser, Meinhard
    BIOMETRICAL JOURNAL, 2013, 55 (06) : 955 - 968
  • [37] New results on optimal conditional error functions for adaptive two-stage designs
    Pilz, Maximilian
    Kieser, Meinhard
    JOURNAL OF APPLIED STATISTICS, 2024,
  • [38] Optimal Two-Stage Randomized Multinomial Designs for Phase II Oncology Trials
    Sun, Linda Z.
    Chen, Cong
    Patel, Kamlesh
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2009, 19 (03) : 485 - 493
  • [39] Group sequential two-stage preference designs
    Liu, Ruyi
    Li, Fan
    Esserman, Denise
    Ryan, Mary M.
    STATISTICS IN MEDICINE, 2024, 43 (02) : 315 - 341
  • [40] Conditional Estimation in Two-stage Adaptive Designs
    Broberg, Per
    Miller, Frank
    BIOMETRICS, 2017, 73 (03) : 895 - 904