We study Maurer–Cartan elements on homotopy Poisson manifolds of degree n. They unify many twisted or homotopy structures in Poisson geometry and mathematical physics, such as twisted Poisson manifolds, quasi-Poisson g\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak g$$\end{document}-manifolds, and twisted Courant algebroids. Using the fact that the dual of an n-term L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_\infty $$\end{document}-algebra is a homotopy Poisson manifold of degree n-1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n-1$$\end{document}, we obtain a Courant algebroid from a 2-term L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_\infty $$\end{document}-algebra g\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak g$$\end{document} via the degree 2 symplectic NQ-manifold T∗[2]g∗[1]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T^*[2]\mathfrak g^*[1]$$\end{document}. By integrating the Lie quasi-bialgebroid associated to the Courant algebroid, we obtain a Lie-quasi-Poisson groupoid from a 2-term L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_\infty $$\end{document}-algebra, which is proposed to be the geometric structure on the dual of a Lie 2-algebra. These results lead to a construction of a new 2-term L∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_\infty $$\end{document}-algebra from a given one, which could produce many interesting examples.
机构:
Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, PolandUniv Salerno, Dipartimento Matemat, Via Giovanni Paolo II,132, I-84084 Fisciano, SA, Italy
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
Liu, Jiefeng
Sheng, Yunhe
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Dept Math, Changchun 130012, Jilin, Peoples R ChinaNortheast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China